Способ управления магнитоупругой связью с помощью когерентного оптического лазерного излучения в эпитаксиальных плёнках феррит-граната

Изобретение относится к области сенсорики и сверхвысокочастотной (СВЧ) техники, в частности к созданию управляемых сенсоров магнитных полей, фильтров, модуляторов и маршрутизаторов СВЧ-излучения, оптически управляемых логических элементов, преобразователей сигналов, рабочим материалом которых являются эпитаксиальные пленки феррит-гранатов с перестраиваемыми свойствами за счет управления магнитоупругой связью в монокристалле с помощью когерентного оптического (лазерного) излучения. Способ управления магнитоупругой связью в монокристаллических магнитных эпитаксиальных пленках катион-замещенных феррит-гранатов 1 включает установку образца пленки феррит-граната 1 в измерительную ячейку 2, помещенную во внешнее переменное магнитное поле В, характеризующееся частотами СВЧ-излучения, при приложении внешнего постоянного магнитного поля В0, при этом измерительная ячейка 2 подключена к векторному анализатору цепей 3 для взаимодействия СВЧ-излучения со спиновой системой магнитной пленки для возбуждения и регистрации ферромагнитного резонанса (ФМР), модулированного за счет эффекта, обусловленного магнитоупругой связью, и характеризующегося ФМР-спектрами на основе частотной зависимости модуля комплексного коэффициента пропускания S21, при этом внешнюю поверхность пленки феррит-граната 1 через проделанное отверстие в измерительной ячейке 1 облучают плоско поляризованным оптическим лазерным монохроматическим когерентным излучением 6 с длиной волны 680 нм и плотностью мощности в диапазоне не более 104 Вт/м2 при изменении частотного диапазона колебаний переменного магнитного поля В в пределах 200-1500 МГц, постоянного магнитного поля В0 в диапазоне 5-50 Э, изменяя тем самым глубину модуляции ФМР-спектров за счет индуцированного оптическим лазерным излучением изменения магнитоупругой связи. В изобретении используют принцип фотоиндуцированного изменения величины магнитной анизотропии, что приводит к изменению величины магнитоупругой связи в монокристаллических эпитаксиальных пленках феррит-гранатов. При этом изменение величины магнитоупругой связи влияет на эффективность спинового возбуждения акустических (фононных) мод и, как следствие, на величину модуляции спектра ферромагнитного резонанса. Технический результат изобретения - повышение эффективности и скорости динамического оптомагнитного управления магнитоупругой связью в катион-замещенных монокристаллических эпитаксиальных пленках феррит-гранатов, а также возможность совмещения на одном твердотельном кристалле трех взаимосвязанных различных внешних факторов воздействия и передачи сигналов, таких как магнитное поле, СВЧ-излучение и оптическое излучение. 2 ил., 1 пр.

 

Изобретение относится к области сенсорики и сверхвысокочастотной (СВЧ) техники, и, в частности, к созданию управляемых сенсоров магнитных полей, фильтров, модуляторов и маршрутизаторов СВЧ-излучения, оптически управляемых логических элементов, преобразователей сигналов и т.д. рабочим материалом которых являются эпитаксиальные монокристаллические пленки феррит-гранатов с перестраиваемыми свойствами за счет управления магнитоупругой связью в монокристалле с помощью когерентного оптического (лазерного) излучения.

Известно, что в эпитаксиальных пленках феррит-гранатов с сильной магнитоупругой связью магнитные моды колебаний могут приводить к возбуждению упругих волн, для которых магнитная пленка вместе с подложкой выступают в качестве резонатора. При этом упругие колебания приводят к модуляции как спектров спиновых волн [Ю. В. Гуляев, П. Е. Зильберман, Г.Т. Казаков, В.Г. Сысоев, В.В. Тихонов, Ю.А. Филимонов, Б.П. Нам, А. С.Хе. Наблюдение быстрых магнитоупругих волн в тонких пластинах и эпитаксиальных пленках железо-иттриевого граната. Письма в ЖЭТФ том. 34, вып. 9, стр. 500-504 (1981)], так и спектров ферромагнитного резонанса (ФМР) набором равноотстоящих по частоте, узких, по сравнению с шириной линии ФМР, линий поглощения («провалов») в спектре магнитных колебаний. При разработке радиотехнических устройств представляется важным иметь возможность управлять амплитудой упругой модуляции спин-волновых спектров.

Величина упругой модуляции магнитных спектров (глубина «провалов») определяется величиной магнитоупругих взаимодействий [С.Н. Полулях, В.Н. Бержанский, Е.Ю. Семук, В.И. Белотелое, П.М. Ветошко, В.В. Попов, А.Н. Шапошников, А.Г. Шумилов, А.И. Чернов. Ферромагнитный резонанс и упругие колебания в эпитаксиальных пленках феррит-граната иттрия ЖЭТФ. - 2021. - Том 159, Вып. 2. - стр. 307-314 DOI: 10.31857/S0044451021020103]. Кроме того, магнитоупругие взаимодействия вносят вклад в магнитную кристаллическую анизотропию, которая влияет как на направление намагниченности в кристалле, так и на спектр спин-волновых возбуждений. При этом и магнитная анизотропия и магнитоупругие взаимодействия имеют одну и ту же природу: магнитные дипольные взаимодействия и спин-орбитальное взаимодействие, которое для переходных 3d элементов, как правило, оказывается доминирующим.

Известно достаточно большое количество способов управления магнитоупругой связью в эпитаксиальных пленках феррит-гранатов и устройств, в основе которых лежит использование магнитоупругой связи и связанного с ней явления магнитострикции. Используя различное катионное замещение, можно синтезировать феррит-гранаты с различной величиной магнитоупругой связи и магнитной анизотропии [Спичкин Ю.И., Тишин А.М. Способ формирования магнитного материала для записи информации с высокой плотностью RU 2 227 941 С2 (H01F 10/08, G11B 5/714, Белов К.П. Редкоземельные магнетики и их применение. - М.: Наука, 1980-239 с]. Эффективность магнитоупругих и анизотропных взаимодействий может быть изменена путем термомагнитной обработки материала [Белов К.П. Редкоземельные магнетики и их применение. - М.: Наука, 1980-239 с]. Для катион замещенных феррит-гранатов известен фотомагнитный эффект [Белов К.П. Редкоземельные магнетики и их применение. - М.: Наука, 1980-239 с], состоящий в изменении магнитной кристаллографической анизотропии под действием линейно поляризованного света. Данный эффект проявляется в изменении амплитуды и смещении частоты сигнала поглощения [Губернаторов В.В., Сычева Т.С, Ольков С.А. Способ термомагнитной обработки анизотропных магнитомягких материалов RU 2 494 153 С1].

Известен способ выращивания монокристаллических пленок феррит-гранатов методом жидкофазной эпитаксии (Патент UA 40028 А МПК 6 С30В 19/02, 29/28, опубл. 16.07.2001, Бюл. №6), включающий погружение подложки из галлий-гадолиниевого граната в пересыщенный расплав смеси феррит-образующих оксидов и растворителя, и осаждение пленок при заданных температурных режимах. В данном изобретении величина магнитной анизотропии и связанные с ней магнитоупругие взаимодействия регулируются за счет изменения катионного состава эпитаксиальной пленки феррит граната.

Общим с заявляемым решением признаком является возможность управления величиной магнитоупругого взаимодействия в эпитаксиальной пленке феррит-граната.

Недостатком технического решения является принципиальная невозможность динамического изменения величины магнитоупругой связи и магнитной анизотропии непосредственно при использовании пленки после ее синтеза. Величина магнитоупругой связи, а также тип и величина магнитной анизотропии формируются при эпитаксиальном синтезе пленки.

Известен магнитооптический материал (Патент RU 2 522 594 С1 МПК С30В 29/28 (2006.01), С30В 19/12 (2006.01), H01F 10/24 (2006.01), H01F 10/28 (2006.01), G02F 1/09 (2006.01), опубл. 20.07.2014, Бюл. №20), который представляет собой эпитаксиальную монокристаллическую пленку феррита-граната состава (YBi)3(FeGa)5O12, выращенную на подложке немагнитного граната с высоким значением параметра решетки а=12,38-12,56 Å, при этом эпитаксиальная пленка содержит 0,1-0,4 формульных единиц ионов Mg2+. Подложка немагнитного граната может быть выполнена из (GdCa)3(GaMgZr)5O12, или Ca3(NbLi)2Ga3O12, или Ca3(NbMg)2Ga3O12, или Ca3(NbZr)2Ga3O12. В данном изобретении величина магнитоупругих взаимодействий и величина магнитной анизотропии регулируются за счет изменения катионного состава эпитаксиальной пленки феррит граната и изменения типа подложки.

Общим с заявляемым решением признаком является возможность управления величиной магнитоупругого взаимодействия в эпитаксиальной пленке феррит-граната.

Недостатком технического решения является принципиальная невозможность динамического изменения величины магнитоупругой связи и магнитной анизотропии непосредственно при использовании пленки после ее синтеза. Величина магнитоупругой связи, а также тип и величина магнитной анизотропии формируются при эпитаксиальном синтезе пленки.

Известен способ обработки магнитооптических управляемых транспарантов на основе эпитаксиальных пленок (Bi, Оа)-содержащих ферритов-гранатов (Патент RU2 150 768 C1 МПК H01L 21/42 (2000.01), опубл. 10.06.2000, Бюл. №16), который заключается в обработке эпитаксиальных пленок феррит-гранатов потоком высокоэнергетических электронов с энергией Ее=(4-7) МэВ при плотности потока Φе=(2-6)⋅1012 см2с-1 до флюенса Φе=(1-5)⋅1016 см-2 (причем облучение проводят по всей поверхности транспаранта и с его нерабочей стороны), а после этого отжигают в атмосфере кислорода при температуре 150-300°С в течение 1-2 ч.

Общим с заявляемым решением признаком является возможность управления величиной магнитоупругого взаимодействия и магнитной анизотропии в эпитаксиальной пленке феррит-граната.

Недостатком технического решения является принципиальная невозможность динамического изменения величины магнитоупругой связи и магнитной анизотропии непосредственно в процессе использовании пленки. Величина магнитоупругой связи, а также тип и величина магнитной анизотропии формируются при обработке эпитаксиальной пленки с помощью облучения потоком высокоэнергетических электронов с последующим отжигом.

Известен магнитострикционный преобразователь высокочастотных ультразвуковых колебаний (Патент RU2 492 590 C1 МПК H04R 15/00 (2006.01), опубл. 10.09.2013, Бюл. №25), который содержит звукопровод в форме цилиндра, на один из торцов которого нанесен магнитострикционный элемент в виде однородной монокристаллической пленки, толщина которой кратна длине волны ультразвуковых колебаний звукопровода. В данном изобретении преобразование переменного магнитного поля в ультразвуковые акустические волны осуществляется за счет магнитоупругой связи в монокристаллической пленке

Общим с заявляемым решением признаком является использование магнитоупругой связи в монокристаллической пленке феррит-граната для преобразования магнитных волн в акустические и наоборот.

Недостатком технического решения является отсутствие возможности управления величиной магнитоупругой связи.

В качестве прототипа выбран термомагнитооптический способ записи информации и устройство для его реализации (Патент RU 2 428 751 С2 МПК G11B 11/12 (2006.01), опубл. 10.09.2011, Бюл. №25), который включает нагрев участка рабочей среды электронным или лазерным пучком до температуры Кюри или температуры компенсации, причем носитель до проведения записи обрабатывают при нормальных атмосферных условиях в отрицательном коронном разряде в течение 2-15 часов при токе короны 50-500 мкА. В данном изобретении величина магнитной анизотропии в пленке магнитного диэлектрика и связанные с ней магнитоупругие взаимодействия регулируются за счет термомагнитной обработки и воздействия коронного разряда. Устройство для реализации предложенного способа содержит лазер, оптическую систему, дисковод, систему внешнего магнитного поля, фотодетектор, системы автокрекинга и автофокусировки, электронный блок канала записи и устройство униполярного коронного разряда, состоящее из высоковольтного выпрямителя, пластины электрода, выполняющей одновременно роль дисковода и покрытой резиновым слоем, а также коронирующего электрода.

Недостатком технического решения является высокая инертность процессов термомагнитного воздействия и обработки в плазме коронного разряда что существенно снижает скорость динамического изменения величины магнитоупругой связи и магнитной анизотропии, при этом дефекты, наводимые коронным разрядом, неизбежно приведут к снижению срока эффективной эксплуатации магнитооптического материала.

Техническим результатом заявляемого изобретения является повышение эффективности и скорости динамического фотоиндуцированного управления магнитоупругой связью в катион-замещенных монокристаллических эпитаксиальных пленках феррит-гранатов непосредственно в устройстве, в котором пленка используется в качестве рабочего материала, а также возможность совмещения на одном твердотельном кристалле трех взаимосвязанных различных внешних факторов воздействия и передачи сигналов, таких как магнитное поле, СВЧ-излучение и оптическое излучение.

Поставленная задача решается следующит образом. Способ управления магнитоупругой связью с помощью когерентного оптического лазерного излучения в монокристаллических эпитаксиальных пленках катион-замещенных феррит-гранатов включает установку образца пленки феррит-граната в измерительную ячейку, подключенную к векторному анализатору цепей для регистрации спектров взаимодействия СВЧ-излучения со спиновой системой магнитной пленки и регистрации ферромагнитного резонанса, помещение пленки феррит-граната вместе с измерительной ячейкой во внешнее магнитное поле, облучение внешней поверхности пленки феррит-граната плоско поляризованным монохроматическим когерентным излучением через специально проделанное отверстие в измерительной ячейке, при этом частота колебаний переменного магнитного поля находится в частотном диапазоне 200-1500 МГц, магнитное постоянное поле может изменяться в диапазоне 5-50 Э, плотность мощности оптического излучения с длиной волны 680 нм составляет 0-104 Вт/м2.

Общими с заявляемым решением признаками прототипа являются использование эпитаксиальной пленки феррит-граната, помещение пленки во внешнее магнитное поле, облучение пленки монохроматическим когерентным (лазерным) излучением. При этом в прототипе управление магнитоупругой связью в эпитаксиальной пленке феррит-граната осуществляется за счет термомагнитной обработки и воздействия коронного разряда.

Отличительными признаками изобретения являются:

- использование сверхвысокочастотного электромагнитного поля для возбуждения и регистрации ферромагнитного резонанса, модулированного за счет эффекта, обусловленного магнитоупругой связью в монокристалле феррит-граната;

- использование когерентного оптического (лазерного) излучения перестраиваемой мощности для модификации спектров ферромагнитного резонанса за счет, индуцированного светом изменения магнитоупругой связи и магнитной анизотропии.

Совокупность отличительных и ограничительных признаков обеспечивает изобретательский уровень заявленного технического решения.

В заявляемом способе используют принцип индуцированного светом изменения величины магнитоупругой связи в монокристаллических эпитаксиальных пленках феррит-гранатов. При этом изменение величины магнитоупругой связи влияет на эффективность магнитоупругого возбуждения упругих мод колебаний и, как следствие, на величину модуляции спектра ферромагнитного резонанса. Данный способ имеет ряд преимуществ:

- динамическое изменение магнитоупругих свойств эпитаксиальных пленок феррит-гранатов;

- обратимость изменения магнитоупругих свойств;

- отсутствие необходимости удаления пленки из измерительной ячейки для изменения ее магнитоупругих свойств.

В основу заявляемого изобретения положен экспериментально обнаруженный эффект влияния линейно поляризованного света на величину магнитоупругих взаимодействий в эпитаксиальных пленках феррит-граната состава (BiLu)3(FeGa)sOi2. Разработанный способ управления магнитоупругой связью с помощью когерентного оптического (лазерного) излучения позволяет создавать на базе монокристаллических эпитаксиальных пленок феррит-гранатов высокоэффективные датчики, модуляторы, фильтры, преобразователи, логические элементы и т.д.

Способ реализуют следующим образом (Фиг. 1). Монокристаллическую эпитаксиальную пленку катион-замещенного феррит-граната 1 помещают в измерительную ячейку 2, подключенную к векторному анализатору цепей 3 для регистрации спектров ФМР. Процедура регистрации спектров ФМР основана на регистрации частотной зависимости комплексного коэффициента пропускания S21 измерительной ячейки 2, содержащей образец 1 пленки феррит-граната. Измерительная ячейка 2 состоит из двух плоскопараллельных металлических пластин 4 и 5, между которыми помещается исследуемый образец (пленка феррит-граната). В одной из пластин выполнено отверстие, через которое образец освещается излучением лазера 6 с длиной волны 680 нм. Измерительная ячейка 2 помещается во внешнее постоянное магнитное поле B0, создаваемое катушками Гельмгольца (на фиг. 1 не показаны).

На Фиг. 2 приведены спектральные зависимости модуля комплексного коэффициента пропускания S21 (спектр ФМР) эпитаксиальной пленки (BiLu)3(FeGa)5O12 толщиной 12 мкм, выращенной на подложке из гадолиний галлиевого граната толщиной 450 мкм и ориентированной в кристаллографической плоскости (111). Постоянное магнитное поле величиной 18,6 Э лежит в плоскости пленки и совпадает с направлением трудного намагничивания в плоскости пленки (кристаллографическое направление [110] или [112]). Основной экспериментально наблюдаемый эффект состоит в уменьшении амплитуды модуляции (провалов) в спектре ФМР на частотах упругого резонанса. При плотности мощности лазерного излучения 8,5⋅103 Вт/м2 модуляция ФМР спектров практически исчезает. Кроме того, увеличение мощности лазерного излучения приводит к незначительному увеличению частоты ФМР, которое мало по сравнению с шириной линии ФМР и, в первом приближении, может не учитываться.

Следует отметить, что, нагрев образца горячим воздухом до температуры 335 К также приводит к росту частоты ФМР, а при дальнейшем увеличении температура образца, наоборот, приводит к уменьшению частоты ФМР, что обусловлено уменьшением намагниченности. При этом максимальное увеличение частоты ФМР в результате нагрева образца в три раза меньше, чем увеличение частоты ФМР вследствие действия лазерного излучения. Кроме того, нагрев образца практически не влияет на величину провалов в спектре ФМР на частоте упругих резонансов. Таким образом, изменение магнитоупругих взаимодействий под действием света обусловлено фотомагнитным эффектом и не может быть сведено к тепловому действию лазерного излучения.

Пример.

Монокристаллическая эпитаксиальная пленка катион-замещенного феррит-граната толщиной 12 мкм с номинальным составом (BiLu)3(FeGa)5O12, выращенная методом жидкофазной эпитаксии на подложке из гадолиний галлиевого граната толщиной 450 мкм с ориентацией поверхности в кристаллографической плоскости (111), помещается в измерительную ячейку (Фиг. 1). Размер пластин ячейки составляет 38 × 14 мм, расстояние между пластинами 2 мм, в одной из пластин выполнено отверстие диаметром 5 мм для ввода лазерного излучения. Измерительная ячейка через коаксиальные волноводы подключается к векторному анализатору сетей Rohde & Schwarz ZNB 20, который способен генерировать и детектировать переменное электромагнитное поле в диапазоне частот 200-1500 МГц (в настоящем примере диапазон частот составлял 400-550 МГц), Образец с измерительной ячейкой помещается между катушками Гельмгольца, которые создают постоянное магнитное поле 18,6 Э. Постоянное магнитное поле лежит в плоскости пленки и совпадает с направлением трудного намагничивания в плоскости пленки (кристаллографическое направление [110]). Взаимное расположение векторов переменного магнитного поля В~ и постоянного магнитного поля В0 относительно образца и измерительной ячейки показаны на Фиг. 1.

Через отверстие в одной из пластин измерительной ячейки образец освещается пучком монохроматического плоско поляризованного лазерного излучения, плотность мощности оптического излучения с длиной волны 680 нм составляет 0-104 Вт/м2. При этом мощность 0 Вт/м2 соответствует отсутствию лазерного излучения.

В качестве регистрируемого параметра выступает частотная зависимость (спектр) модуля комплексного коэффициента пропускания S21 (спектры ФМР). На Фиг. 2 показаны спектры коэффициента S21 при облучении образца лазерным излучением с плотностью оптической мощности 0 Вт/м2, 2,1⋅103 Вт/м2, 5,7⋅103 Вт/м2, и 8,6⋅103 Вт/м2. При этом изменение мощности лазерного излучения приводит к изменению глубины модуляции ФМР спектра за счет управления магнитоупругой связью в монокристаллической эпитаксиальной пленке катион-замещенного феррит-граната, а мощность лазерного излучения 8,5⋅103 Вт/м2 приводит к практически полному подавлению модуляция ФМР спектров.

Данное изобретение позволяет на одном твердотельном кристалле обеспечить взаимную связь трех различных внешних факторов воздействия и передачи сигналов, таких как магнитное поле, СВЧ-излучение и оптическое излучение. Это позволяет по изменению одного из факторов взаимодействия оценить изменение параметров других факторов (сенсорное применение), либо за счет изменения одного фактора взаимодействия влиять на другие факторы (применение в качестве элемента управления), либо сигнал, передаваемый за счет одного фактора взаимодействия, преобразовывать в сигналы другого фактора (применение в качестве преобразователя). Изобретение может быть использовано в области электроники и СВЧ-техники, в линиях связи, в том числе волоконно-оптической, в наукоемких технологиях при создании высокочувствительных датчиков магнитного поля и т.д., а также при проведении комплексных лабораторных исследований.

Способ управления магнитоупругой связью в монокристаллических магнитных эпитаксиальных пленках катион-замещенных феррит-гранатов, включающий установку образца пленки феррит-граната в измерительную ячейку, помещенную во внешнее переменное магнитное поле, характеризующееся частотами СВЧ-излучения, при приложении внешнего постоянного магнитного поля, при этом измерительная ячейка подключена к векторному анализатору цепей для взаимодействия СВЧ-излучения со спиновой системой магнитной пленки для возбуждения и регистрации ферромагнитного резонанса (ФМР), модулированного за счет эффекта, обусловленного магнитоупругой связью, и характеризующегося ФМР-спектрами на основе частотной зависимости модуля комплексного коэффициента пропускания S21, отличающийся тем, что внешнюю поверхность пленки феррит-граната через проделанное отверстие в измерительной ячейке облучают плоско поляризованным оптическим лазерным монохроматическим когерентным излучением с длиной волны 680 нм и плотностью мощности в диапазоне не более 104 Вт/м2 при изменении частотного диапазона колебаний переменного магнитного поля в пределах 200-1500 МГц, постоянного магнитного поля в диапазоне 5-50 Э, изменяя тем самым глубину модуляции ФМР-спектров за счет индуцированного оптическим лазерным излучением изменения магнитоупругой связи.



 

Похожие патенты:

Изобретение относится к технике сверхвысоких частот и предназначено для умножения частоты СВЧ сигналов в системах связи, радиолокации, радионавигации, различной измерительной и специальной радиоаппаратуре. Техническим результатом изобретения является повышение коэффициента преобразования устройства при сохранении радиационной стойкости.

Изобретение относится к технике сверхвысоких частот и предназначено для умножения частоты СВЧ сигналов в системах связи, радиолокации, радионавигации, различной измерительной и специальной радиоаппаратуре. Техническим результатом заявляемого изобретения является повышение коэффициента преобразования устройства и уменьшение размеров при сохранении радиационной стойкости.

Изобретение относится к измерительной технике и предназначено для неразрушающего контроля качества и однородности магнитных пленок путем регистрации (записи) спектров ферромагнитного резонанса от локальных участков тонкопленочных образцов. Чувствительный элемент сканирующего спектрометра ферромагнитного резонанса с частотной подстройкой содержит СВЧ-генератор с задающим резонатором, амплитудный детектор и взаимодействующий с измеряемым участком образца элемент, выполненный в виде экрана с измерительным отверстием, размещенным под резонатором, при этом над измерительным отверстием располагается индуктивный элемент задающего резонатора СВЧ-генератора, причем СВЧ-генератор дополнительно содержит один или более варикапов, предназначенных для подстройки частоты задающего резонатора и для регулировки коэффициента положительной обратной связи, а также дополнительно содержит вход для регулировки тока базы транзистора.

Группа изобретений относится к источникам электропитания. В частности, она применима в сочетании с адаптерами электропитания, преобразующими переменный ток в постоянный ток, для медицинских устройств, используемых в условиях сильных внешних магнитных полей, и будет описана с частной ссылкой на такое применение.

Изобретение относится к измерительной технике, в частности к способам измерения намагниченности магнитной жидкости. Техническим результатом является повышение точности измерений намагниченности магнитной жидкости и снижение необходимого минимального объема исследуемого образца.

Изобретение относится к медицинской технике, а именно к средствам магнитно-резонансной томографии. МРТ содержит установленные в полости магнита основную катушку, выполненную с возможностью работы в качестве передающей или приемо-передающей, размещенные вблизи исследуемого объекта приемную катушку и дополнительную катушку, выполненную с возможностью работы в качестве передающей, или приемо-передающей, или закороченной на концах, систему коммутации катушек, включающую коммутатор, автоматический переключатель, сумматор и селектор и приемник и передатчик.

Использование: для контроля измерения скоростей при фазоконтрастной магнитно-резонансной томографии. Сущность изобретения заключается в том, что фантом представляет собой вращающийся с заданной угловой скоростью диск, максимальные габаритные размеры которого 150×160 мм, а конкретные свойства обеспечивает соединение гадолиния GD-DTPA и крепление на валу, который свободно вращается во втулках, опирающихся на кронштейны, детали фантома изготовлены из немагнитных пластиковых материалов, поверх диска надет нескользящий материал - латекс, крутящий момент передается на фантом посредством ременной передачи со шкива, расположенного на оси электромотора вне магнита на расстоянии 3,5 метра, шкив также покрыт латексом и осуществляет передачу крутящего момента, мотор соединен с блоком управления.

Изобретение относится к области радиосвязи. Отличительной особенностью заявленного устройства исследования электромагнитного поля вторичных излучателей является введение коммутатора передающих антенн, коммутатора приемо-передающих антенн, приемо-передающей антенной системы, двух передающих антенн для создания вертикальной составляющей, двух передающих антенн для создания горизонтальной составляющей, адаптивного преобразователя, формирователя информации излучения вторичных излучателей, преобразователя частотного спектра, блока фильтров, блока анализа спектра излучения, блока исследования спектра вторичного излучения.

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе алмаза для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Способ определения ориентации NV дефектов в кристалле алмаза включает помещение образца кристалла алмаза во внешнее магнитное поле, воздействие на образец микроволновым излучением, облучение рабочего объема образца сфокусированным лазерным излучением, возбуждающим в рабочем объеме образца фотолюминесценцию, по которой регистрируют сигнал оптически детектируемого магнитного резонанса (ОДМР), который создают путем развертки частоты микроволнового излучения и модуляции внешнего магнитного поля.

Использование: для обнаружения воспаления или инфекции. Сущность изобретения заключается в том, что обнаружение воспаления или инфекции выполняют путем 13С-МР томографии, 13С-МР спектроскопии и/или 13С-МР спектроскопической томографии, при котором используют визуализирующую среду, содержащую гиперполяризованный 13С-пируват, и воспаление или инфекцию определяют по высокой интенсивности 13С-сигнала от 13С-лактата или по повышенной скорости образования 13С-лактата.

Изобретение относится к электротехнике, а именно к электрическим машинам, и может быть использовано при определении потерь в трансформаторах. Техническим результатом является возможность определения показателя степени магнитной индукции, с которым она входит в выражение потерь на гистерезис (на перемагничивание) в стальном сердечнике трансформатора при номинальной частоте по результату двух измерений и одному паспортному параметру трансформатора, что позволит эффективно конструировать материал листов и снизить потери в стали трансформаторов.
Наверх