Способ определения размера капель

Изобретение относится к области изучения качества распыления водных растворов и может быть использовано при оценке работы сельскохозяйственных опрыскивателей. Способ определения размеров капель включает распыление ненасыщенного раствора водорастворимой соли над водоотталкивающей поверхностью коллектора, отбор капель на поверхность коллектора, высушивание до образования кристаллов соли, последующее восстановление капель из этих кристаллов соли в атмосфере повышенной влажности до момента полного растворения кристалла соли и измерение их размеров с помощью микроскопа, оборудованного фотонасадкой, при этом распыление раствора производят над камерой, выполненной в виде емкости, на дне которой расположена подставка для коллектора, а в верхней части размещена крышка с отверстием, над которым смонтирована подвижная заслонка, выполненная в форме клиновидной полой емкости, состоящей из боковых стенок, верхней пластины с отверстием в центральной части и нижней пластины, установленной с наклоном не менее 130°, а также задней стенки, снабженной водосливным отверстием, при этом в передней части нижней пластины выполнена сквозная прорезь, сообщенная с отверстием в верхней пластине, кроме того, заслонка сопряжена с гидравлическим приводом. Техническим результатом является повышение точности измерения капель. 3 ил.

 

Предлагаемое изобретение относится к области метрологии и найдет применение при испытании распылительных форсунок, в том числе используемых в сельскохозяйственных опрыскивателях.

Известен способ определения размеров капель включающий, напыление ненасыщенного раствора водорастворимой соли на водоотталкивающую поверхность, предварительно взвешенного коллектора, подсчет капель на поверхности коллектора, высушивание коллектора до образования кристаллов соли, последующее взвешивание высушенного коллектора и расчет среднего диаметра капель (АС СССР, № 1562777, МКИ G01N 15/02, бюл. № 17, 07.05.90 г.).

Недостатком этого способа является неустановившийся расход в момент сбора капель на поверхность коллектора, так как процесс распыления жидкости при включении форсунки делится на три этапа: начала работы с нарастающей интенсивностью, установившийся расход и завершение работы с убывающей интенсивностью. На первом и третьем этапах, капли имеют не характерный для форсунки размер. Поэтому капли собранные на коллекторе будут иметь усредненную величину, что снижает точность определения размера капель соответствующего установившемуся рабочему режиму форсунки.

Известен способ определения размеров капель включающий, распыление ненасыщенного раствора водорастворимой соли над водоотталкивающей поверхностью коллектора, отбор капель на поверхность коллектора, высушивание до образования кристаллов соли. Последующее восстановление капель из этих кристаллов соли, в атмосфере повышенной влажности до момента полного растворения кристалла соли и измерение их размеров с помощью микроскопа оборудованного фото насадкой (АС СССР, №1539598, МКИ G01N 15/02, бюл. № 4, 30.01.90 г.).

Недостатком этого способа является также неустановившийся расход в момент сбора капель на поверхность коллектора, так как процесс распыления жидкости при включении форсунки делится на три этапа: начала работы с нарастающей интенсивностью, установившийся расход и завершение работы с убывающей интенсивностью. На первом и третьем этапах, капли имеют не характерный для форсунки размер, поэтому капли собранные на коллекторе будут иметь усредненную величину, что снижает точность определения размера капель соответствующего установившемуся рабочему режиму форсунки.

Устранить указанные недостатки позволяет способ определения размеров капель, включающий распыление ненасыщенного раствора водорастворимой соли над водоотталкивающей поверхностью коллектора, отбор капель на поверхность коллектора, высушивание до образования кристаллов соли, последующее восстановление капель из этих кристаллов соли в атмосфере повышенной влажности до момента полного растворения кристалла соли и измерение их размеров с помощью микроскопа, оборудованного фото насадкой, согласно изобретению, распыление раствора производят над камерой, выполненной в виде емкости, на дне которой расположена подставка для коллектора, а в верхней части размещена крышка с отверстием, над которым смонтирована подвижная заслонка, выполненная в форме клиновидной полой емкости, состоящей из боковых стенок, верхней пластины с отверстием в центральной части и нижней пластин установленной с наклоном не менее 130°, а также задней стенки снабженной водосливным отверстием, при этом в передней части нижней пластины выполнена сквозная прорезь, сообщенная с отверстием в верхней пластине, кроме того заслонка сопряжена с гидравлическим приводом.

Новый технический результат применения предложенного способа состоит в повышении точности измерения размера капель при диспергировании раствора в рабочем режиме форсунки, в связи с тем, что открытие заслонки в камере производят при установившемся рабочем режиме форсунки, что позволяет, исключит попадание на коллектор не типичных для рабочего режима капель, образующихся в периоды выхода форсунки на рабочий режим и выход из него.

Сущность предложения поясняется чертежом, где на фиг. 1 представлен общий вид камеры перед отбором капель; на фиг. 2 - общий вид камеры в момент отбора капель; на фиг. 3 - вид заслонки крупным планом. Камера для осуществления предложенного способа включает емкость 1 образованную четырьмя стенками 2, дном 3 и крышкой 4,в крышке выполнено отверстие 5, а под ним на дне 3 установлена подставка для размещения коллектора 6, покрытого гидрофобным материалом. Над отверстием 5 смонтирована подвижная заслонка 7, выполненная в форме клиновидной полой емкости, состоящей из двух боковых стенок 8 верхней пластины 9 и нижней пластин 10, установленной с наклоном не менее 130°, а также задней стенки 11, снабженной отверстием 12 с водосливным патрубком 13. На нижней наклонной пластине 10 расположена отражающая перегородка 14. При этом в передней части нижней пластины 10 выполнена сквозная прорезь 15, сообщенная с отверстием 16 в верхней пластине 9. Кроме того заслонка 7 сопряжена со штоком 17 с гидравлическим приводом. На емкости 1 смонтирована стойка 18, на которой крепится шланг 19 с форсункой 20.

Рассмотрим пример осуществления предложенного способа измерения капель. Предварительно приготовили ненасыщенный раствор соли, например хлористого натрия. Коллектор 6 установили на подложке на дне камеры 1. Форсунку 20 разместили строго над центром коллектора. При этом заслонку 7 переместили над камерой 1, перекрывая отверстие 5 в крышке 4. Форсунку 20 пропустили через прорезь 15 и совместили с отверстием 16 в верхней пластине 9 заслонки 7. Затем включили подачу раствора по шлангу 19 к форсунке 20. Продолжительность подачи составила 10 секунд. За этот период времени форсунка вышла на установившийся рабочий режим. При этом капли раствора, выбрасываемые из форсунки, отражаясь от перегородки 14, стенки 10 и боковых стенок 8 затвора, стекали на дно заслонки. Здесь они накапливались и через отверстие 12 по патрубку 13 вытекали в накопительную емкость (на рисунке не указано). При установившемся рабочем режиме форсунки 20, произвели отбор пробы капель на коллектор 6. Для этого с помощью пневмоцилиндра, через шток 17 отвели заслонку 7 в крайнее левое положение, открыв доступ каплям из форсунки 20 в камеру 1. Затем возвратили заслонку 7 в исходное положение. Продолжительность экспозиции при проведении испытаний составляла 0,05 с.

Угол наклона пластины 10 не превышает 130°. Поэтому у форсунок с максимальным углом раскрытия факела 120° при движении заслонки 7 отсутствовал контакт капель в факеле со стенкой заслонки. После закрытия заслонкой 7 отверстия 5, коллектор 6 в течение несколько минут выдерживали в камере 1, для достижения полного оседания капель на его поверхность. Затем коллектор извлекли и поставили на высушивание до образования кристаллов соли. После высушивания было произведено восстановление капель из этих кристаллов соли в атмосфере повышенной влажности до момента полного растворения кристалла соли и образования капель. Измерение размеров, которых производили с помощью микроскопа, оборудованного фото насадкой.

Таким образам применение способа измерения капель с использованием камеры с подвижной заслонкой обеспечило повышение точности измерения, благодаря исключению отбора капель в период неустановившегося режима работы форсунки.

Способ определения размеров капель, включающий распыление ненасыщенного раствора водорастворимой соли над водоотталкивающей поверхностью коллектора, отбор капель на поверхность коллектора, высушивание до образования кристаллов соли, последующее восстановление капель из этих кристаллов соли в атмосфере повышенной влажности до момента полного растворения кристалла соли и измерение их размеров с помощью микроскопа, оборудованного фотонасадкой, отличающийся тем, что распыление раствора производят над камерой, выполненной в виде емкости, на дне которой расположена подставка для коллектора, а в верхней части размещена крышка с отверстием, над которым смонтирована подвижная заслонка, выполненная в форме клиновидной полой емкости, состоящей из боковых стенок, верхней пластины с отверстием в центральной части и нижней пластины, установленной с наклоном не менее 130°, а также задней стенки, снабженной водосливным отверстием, при этом в передней части нижней пластины выполнена сквозная прорезь, сообщенная с отверстием в верхней пластине, кроме того, заслонка сопряжена с гидравлическим приводом.



 

Похожие патенты:

Изобретение относится к области испытательного оборудования в машиностроении и может быть использовано для проведения испытаний электрической, электронной и радиотехнической аппаратуры на пыленепроницаемость. Камера для испытания на пыленепроницаемость содержит каркас, включающий подставку, основание 6, стойку 8 и площадку 15.

Устройство для определения дисперсного состава и скорости оседания частиц пыли относится к области измерительной техники и может быть использовано при санитарно-гигиеническом контроле воздуха производственных помещений, очистных систем промышленных производств и т.п. Устройство содержит деревянную пустотелую подставку с выполненным по горизонтальной плоскости металлическим основанием, в котором по вертикальной оси жёстко закреплён стеклянный седиментационный цилиндр, на котором соосно сверху смонтирован буфер, выполненный в виде конусообразной металлической воронки, предназначенный для распыления в нём исследуемого образца пыли.

Изобретение относится к области исследований или анализа дисперсного состава аэрозольных частиц загрязняющих веществ в воздухе при проведении пробоотбора с использованием импакторов. Способ адаптирования каскадных струйных импакторов к различным условиям отбора проб аэрозоля, характеризующихся изменением плотности вещества отбираемых частиц и(или) объемной скорости аспирации, заключается в корректировке скорости воздуха на входе в каждый каскад и(или) длины пробега частиц до улавливающей подложки путем использования комплектов сменных элементов конструкции каскадов импактора, при этом обеспечение функциональности одного и того же импактора при различных условиях отбора проб аэрозоля достигается комбинированием величины сечения сопел и(или) расстояния от входного канала каскада до улавливающей подложки за счет использования комплекта сменных мембран с отверстиями разного количества и диаметра и(или) комплекта сменных элементов стоек различной длины, удерживающих улавливающие подложки, либо стоек, конструктивно позволяющих изменять и фиксировать их длину за счет резьбового соединения.

Изобретение относится к области проточной цитометрии, в частности, к принадлежностям для проточной цитометрии. Измерительная кювета для подсчета и/или характеризации клеток, содержащая основание и прозрачный боковой корпус, отходящий от основания и образующий вместе с ним оптическую измерительную камеру, причем основание имеет сквозное отверстие диаметром от 30 до 100 мкм, предназначенное для прохождения сквозь него клеток, основание и прозрачный боковой корпус образуют цельную кювету, пригодную для измерения полного сопротивления и для оптических измерений, при этом основание содержит верхнюю поверхность, которая является объединением боковой поверхности и поверхности меньшего радиуса усеченного тела, причем сквозное отверстие проходит сквозь основание на участке, соответствующем указанной поверхности меньшего радиуса верхней поверхности.

Изобретение относится к измерению параметров наноразмерных пористых материалов. Способ измерения пор гидрофильных материалов включает заполнение пористого вещества жидкой водой, регистрацию спектра вещества с адсорбированной водой на спектрометре среднего разрешения, параметры пористого вещества определяются из спектра поглощения адсорбированной воды с помощью модели в виде линейной регрессии, предварительно построенной по эталонным спектрам.

Изобретение относится к способу определения гранулометрического состава воздуха для датчика пыли бескамерного типа и электронному вычислительному устройству для его реализации. Способ определения гранулометрического состава воздуха для датчика пыли бескамерного типа содержит этапы, на которых: фокусируют лазерный луч в точке пространства для задания объема зондирования в области вблизи точки фокуса лазерного луча, причем размер объема зондирования является переменным в зависимости от размеров частиц, которые должны быть детектированы; задают пороговое значение для сигналов частиц, причем сигналы частиц представляют собой принятое лазерное излучение, рассеянное на частицах, пролетающих сквозь объем зондирования, при этом пороговое значение является по меньшей мере одним из, по меньшей мере, формы огибающей сигнала и максимальной амплитуды сигнала; детектируют сигналы частиц от частиц, пролетающих сквозь объем зондирования; извлекают значения параметров сигнала из каждого детектированного сигнала частицы, причем параметрами сигнала являются по меньшей мере одно из амплитуды сигнала, частоты колебаний сигнала, количества колебаний в сигнале, времени пролета частицы сквозь объем зондирования, формы огибающей сигнала; строят статистическое распределение извлеченных значений по меньшей мере одного параметра сигнала, выбранного из амплитуды сигнала, количества колебаний в сигнале и формы огибающей сигнала или комбинации всех параметров сигнала; строят распределение частиц по размерам с использованием построенного статистического распределения и обученной модели распределения частиц по размерам.

Изобретение относится к устройствам испытания фильтрующих, коагулирующих, сепарирующих материалов и элементов средств очистки топлив и может быть использовано на предприятиях по производству средств очистки нефтепродуктов. Установка для испытаний материалов и элементов средств очистки топлив содержит замкнутый трубопроводный контур, в котором последовательно по потоку установлен бак для топлива, фильтр предварительной очистки, насос, дозатор механических загрязнений, камера для размещения испытываемых материалов и/или элементов и блок управления, к входам которого подключены датчик перепада давления на входе и выходе камеры для размещения испытываемых материалов и/или элементов, счетчик расхода топлива, а также дозатор воды, подключенный к замкнутому трубопроводному контуру, два гидрораспределителя, размещенное внутри камеры подпружиненное кольцо, связанное пружиной с внутренней стороной крышки испытательной камеры, в виде полого прозрачного цилиндра с вертикальной цилиндрической перегородкой, при этом в нижней части стенки испытательной камеры и в днище, на внутренней поверхности которой по всей ее высоте выполнены равноудаленные друг от друга направляющие для взаимодействия во время скольжения проточек обоймы для размещения испытываемого плоского образца материала, при этом внутренняя полость подключена к трубопроводному контуру, ко входу и выходу внешней полости подключен датчик перепада давления, патрубок в нижней части стенки этой полости связан с циркуляционным контуром через последовательно соединенный нормально закрытый канал первого гидрораспределителя и нормально открытый канал второго гидрораспределителя, а патрубок в днище внешней полости испытательной камеры соединен с циркуляционным контуром через соответствующий нормально открытый канал второго гидрораспределителя и дополнительно введенный датчик расхода жидкости через внешнюю полость испытательной камеры, при этом датчик перепада давления во внешней полости, датчик расхода жидкости через внешнюю полость и приводы первого и второго гидрораспределителей подключены к соответствующим входам блока управления.

Изобретение относится к измерительной технике и может быть использовано для определения коэффициентов диффузии в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой и строительной промышленности. Способ определения коэффициента диффузии в листовых капиллярно-пористых материалах заключается в том, что в исследуемом листовом материале создают равномерное начальное содержание распределенного в твердой фазе растворителя, затем исследуемый материал помещают на плоскую подложку из непроницаемого для растворителя материала, гидроизолируют верхнюю поверхность материала, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия дозой растворителя, затем измеряют изменение во времени сигнала гальванического преобразователя на заданном расстоянии от точки нанесения импульса дозой растворителя, фиксируют момент времени достижения заданного значения сигнала гальванического датчика и рассчитывают коэффициент диффузии, при этом измеряют изменение во времени сигнала дополнительного гальванического датчика на другом расстоянии от точки нанесения импульса дозой растворителя, фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов соответственно первого датчика E1 и второго датчика E2 из диапазона (0,7 – 0,9) Ee на нисходящих ветвях кривых изменения сигналов во времени этих двух датчиков, а расчет коэффициента диффузии производят по формуле: , где r1 и r2 – расстояние между электродами соответственно первого и второго гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия; Ee - максимально возможное значение сигнала датчиков, соответствующее переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния.

Изобретение относится к аппаратуре для измерения распределения размеров частиц и способу измерения распределения размеров частиц исходного материала для доменной печи или другого аналогичного устройства. Аппаратура для измерения распределения размеров частиц исходного материала, содержащего крупные частицы и липкий порошок, налипший на крупные частицы, содержит устройство для измерения крупных частиц, выполненное с возможностью получения информации, указывающей распределение размеров крупных частиц; устройство для измерения липкого порошка, выполненное с возможностью получения информации, указывающей распределение размеров частиц липкого порошка; и вычислительное устройство, выполненное с возможностью вычисления распределения размеров частиц исходного материала, при этом вычислительное устройство содержит модуль вычисления распределения размеров крупных частиц, выполненный с возможностью вычисления распределения размеров крупных частиц на основе информации, указывающей распределение размеров крупных частиц, полученной указанным устройством для измерения крупных частиц, модуль вычисления распределения размеров частиц липкого порошка, выполненный с возможностью вычисления распределения размеров частиц липкого порошка на основе информации, указывающей распределение размеров частиц липкого порошка, полученной указанным устройством для измерения липкого порошка, и модуль вычисления распределения размеров частиц исходного материала, выполненный с возможностью вычисления распределения размеров частиц исходного материала на основе распределения размеров крупных частиц, вычисленного модулем вычисления распределения размеров крупных частиц, и на основе распределения размеров частиц липкого порошка, вычисленного модулем вычисления распределения размеров частиц липкого порошка.

Изобретение относится к области нефтехимической промышленности и может быть использовано в промысловых и научно-исследовательских лабораториях для разработки технологий увеличения нефтеотдачи пластов и при подсчете извлекаемых запасов нефти, оперативном контроле за разработкой нефтяных месторождений. Способ включает создание в образце остаточной водонасыщенности: исследуемый образец помещают в рентгенопрозрачный кернодержатель фильтрационной установки, образец сканируют рентгеновским излучением (сигнал детектора Iво), затем поровое пространство образца заполняют рекомбинированной нефтью (моделью пластовой нефти), проводят сканирование образца рентгеновским излучением (сигнал с детектора рентгеновского излучения Iнн).

Изобретение относится к области исследований или анализа дисперсного состава аэрозольных частиц загрязняющих веществ в воздухе при проведении пробоотбора с использованием импакторов. Способ адаптирования каскадных струйных импакторов к различным условиям отбора проб аэрозоля, характеризующихся изменением плотности вещества отбираемых частиц и(или) объемной скорости аспирации, заключается в корректировке скорости воздуха на входе в каждый каскад и(или) длины пробега частиц до улавливающей подложки путем использования комплектов сменных элементов конструкции каскадов импактора, при этом обеспечение функциональности одного и того же импактора при различных условиях отбора проб аэрозоля достигается комбинированием величины сечения сопел и(или) расстояния от входного канала каскада до улавливающей подложки за счет использования комплекта сменных мембран с отверстиями разного количества и диаметра и(или) комплекта сменных элементов стоек различной длины, удерживающих улавливающие подложки, либо стоек, конструктивно позволяющих изменять и фиксировать их длину за счет резьбового соединения.
Наверх