Способ определения степени шаржирования металлических поверхностей абразивными зёрнами из сверхтвердых абразивных материалов

Изобретение относится к абразивной обработке материалов и может быть использовано для контроля степени шаржирования материала после абразивной обработки с использованием алмаза или кубического нитрида бора. Сущность: получают изображение обработанной поверхности с помощью микроскопа методом обратно-рассеянных электронов. Для оценки количества шаржированных частиц выполняется дополнительная обработка изображения в виде изменения контраста и яркости изображения, затем определяют количество самых темных (черных) пикселей на растровом изображении посредством программного обеспечения с последующим определением степени шаржирования по выражению: , где S – степень шаржирования, С1 – общее количество пикселей изображения, С2 – количество тёмных пикселей. Технический результат: повышение надежности и точности оценки степени шаржирования поверхности при абразивной обработке. 3 ил.

 

Изобретение относится к абразивной обработке материалов и может быть использовано для контроля степени шаржирования материала после абразивной обработки с использованием алмаза или кубического нитрида бора.

Известен способ определения степени шаржирования поверхностей изделия абразивными частицами [Авторское свидетельство SU179072, МПК G01n, опубл. 03.11.1966г.], заключающийся в использовании абразивного инструмента, содержащего люминесцентные зёрна и определении количества и размера видимых частиц с помощью микроскопа и люминесцентного осветителя.

Недостаток данного способа заключается в том, что степень шаржирования определяется исключительно по люминесцентным зёрнам и как следствие, ограничивается область применения данного способа. Также для реализации данного способа необходимо изготовить специальный инструмент.

Известен метод поверхностного анализа минеральных частиц [Патент JP2018081092, МПК G01N1/28, G01N1/36, G01N23/04, G01N23/203, G01N23/2206, G01N23/2252, опубл. 24.05.2018г.], включающий в себя поиск минеральных частиц в руде путем регистрации обратно-рассеянных электронов и их идентификацию методом энергодисперсионной рентгеновской спектроскопии.

Недостатком данного метода является необходимость использования химического анализа и отсутствие количественной оценки содержания минералов. Данный метод применяется исключительно в горнодобывающей промышленности и применяется только для оценки наличия минеральных частиц в руде.

Наиболее близким и принятым за прототип является морфологическое исследование режущего инструмента из кубического нитрида бора (CBN) и характеристика сценариев его износа в процессе абразивной обработки (Fang S. Morphological study of a cubic boron nitride (CBN) cutting tool and characterization of its wear scenarios in abrasive machining process // Ceramics International. – 2020. – Vol. 46 – P. 19491–19498. DOI: 10.1016/j.ceramint.2020.04.302.) В данном исследовании использовались изображения, полученные методом обратно-рассеянных электронов, для создания математической модели формы шаржированных частиц с последующим 3-d моделированием. Количество шаржированных частиц определяют по созданным 3-d моделям.

Недостатком методики, использованной в данном исследовании, является трудоемкость реализации способа, а также недостоверность полученных данных, потому что количественная оценка проводится только для крупных (хорошо различимых) шаржированных частиц.

Задачей изобретения является разработка способа оценки интенсивности шаржирования при абразивной обработке поверхности, позволяющего доступно и наиболее точно определить площадь, которую занимают шаржированные частицы на поверхности обработанного материала.

Технический результат – повышение надежности и точности оценки степени шаржирования поверхности при абразивной обработке.

Технический результат достигается при использовании способа определения степени шаржирования металлических поверхностей абразивными зёрнами из сверхтвердых абразивных материалов включающего получение изображений обработанной поверхности с помощью микроскопа и оценку количества шаржированных на обработанной поверхности частиц, при этом изображение получают методом обратно-рассеянных электронов, а для оценки количества шаржированных частиц выполняется дополнительная обработка изображения, в виде изменения контраста и яркости изображения, определение количества самых темных (черных) пикселей на растровом изображении посредством программного обеспечения, с последующим определением степени шаржирования по выражению:

,

где S – степень шаржирования, С1 – общее количество пикселей изображения, С2 – количество тёмных пикселей.

Изображения, полученные методом регистрации обратно-рассеянных электронов, позволяют определить не только количество, но и идентифицировать вид внедренных (шаржированных) частиц абразивного материала по цветовым параметрам. Такой подход также позволяет произвести расчет не только крупных и хорошо различимых частиц, но и учитывать даже самые маленькие частицы, поскольку увеличение, на котором будут получены изображения, определяется таким образом, чтобы площадь мельчайшей шаржированной частицы была больше разрешения микроскопа. Все внедренные частицы – это продукты износа шлифовального круга, зернистость которого, известна из маркировки. Размер внедренных частиц зависит также от механизма износа абразивных зёрен. Для установления минимальной площади таких частиц используется диапазон увеличений от 500 до 4000 крат. Далее разрешение выбирается таким образом, чтобы площадь минимальной частицы была больше площади, передаваемой (отображаемой) одним пикселем получаемого цифрового изображения. Разрешающая способностью электронного микроскопа измеряется в нано метровом диапазоне и в 1000 раз ниже масштаба измеряемых частиц, что позволяет достичь высокой точности определения шаржированных частиц, любых размеров. Надёжность построения цифрового изображения и определения количества частиц обусловлена диаметром пучка электронов, который очень мал, что позволяет регистрировать даже самые маленькие шаржированные частицы.

Возможность цветовой идентификации шаржированных частиц позволяет исключить частицы неабразивного характера, не учитываемые при расчете, но имеющиеся на обработанной поверхности, что повышает точность и надежность полученных данных.

Применение дополнительной обработки - изменение контраста и яркости, - к таким изображениям, позволяет более точно выявить шаржированные частицы на поверхности обработанного материала, особенно в случаях, когда наличие микронеровностей обработанной поверхности маскирует шаржированные частицы.

Применение к обработанным изображениям программного обеспечения, с функцией построения гистограммы распределения элементов цифрового изображения, позволяет быстро рассчитать количество шаржированных частиц и на основе полученных данных произвести математический расчет степень шаржирования. При оценке степени шаржирования оценивается отношение количества темных (чёрных) пикселей к общему количеству пикселей изображения, тогда в расчете будут учитываются только шаржированные частицы, поскольку изображения были предварительно обработаны и очищены, а также будут учтены все частицы любых форм и размеров.

На Фиг. 1 показано изображение титанового сплава, шаржированного кубическим нитридом бора (КНБ), полученное датчиком вторичны электронов.

На Фиг. 2 показано изображение титанового сплава, шаржированного КНБ, полученное регистрацией обратно рассеянных электронов.

На Фиг. 3 показано изображение титанового сплава, шаржированного КНБ после настройки яркости и контраста, обработанное в графическом редакторе GNU Image Manipulation Program 2.10.20.

Способ определения степени шаржирования металлических поверхностей абразивными зёрнами из сверхтвердых абразивных материалов реализуется следующим образом.

В процессе абразивной обработки изношенные частицы шаржируются в поверхностный слой обрабатываемой детали. После абразивной обработки необходимо очистить поверхностный слой обрабатываемой детали от загрязнений при помощи ультразвука. После этого получают изображения поверхностного слоя, при помощи электронного микроскопа, путем регистрации обратно-рассеянных электронов. Каждая частица излучает свет с заданной яркостью в соответствии со средним атомным номером. Исходя из того, что внедренными в поверхность заготовки частицами могут быть кристаллы карбида кремния, электрокорунда, кубического нитрида бора или алмаза, очевидно, что их атомный номер существенно меньше, чем, например, у наиболее широко применяемых металлов, располагающихся в 4-м периоде периодической системы химических элементов (титан, железо, никель) и их сплавов. Увеличение, на котором будут получены изображения, определяется таким образом, чтобы площадь мельчайшей шаржированной частицы была больше разрешения микроскопа.

Для устранения фактора разности энергий электронов, вызванных разновысотностью поверхностного слоя, осуществляется дополнительная обработка изображения, в виде изменения контраста и яркости изображения.

Далее используют программное обеспечение, с функцией построения гистограммы распределения элементов цифрового изображения, позволяющее анализировать растровое изображение. Для оценки степени шаржирования оценивается отношение количества темных (чёрных) пикселей к общему количеству пикселей изображения. Степень шаржирования измеряют по отношению количества тёмных пикселей к общему количеству пикселей изображения:

,

где S – степень шаржирования, С1 – общее количество пикселей изображения, С2 – количество тёмных пикселей

Способ определения степени шаржирования металлических поверхностей абразивными зёрнами из сверхтвердых абразивных материалов характеризуется следующим примером.

После шлифования титанового сплава ВТ1-00 кругом из кубического 1A1 350x127x16x5 CBN30 B126 100% M V полученная поверхность исследуется на электронном микроскопе. Для описания морфологии поверхности используется изображение, полученное в режиме вторичных электронов. Для анализа степени шаржирования используют изображение, полученное в режиме отраженных электронов. Минимальная площадь внедренных частиц составляет 5 мкм, а площадь, передаваемая одним пикселем изображения – 4 мкм, что соответствует увеличению 130х. (484 пикселя – 1 мм, 1921х1211). Тёмные участки поверхности свидетельствует о том, что на поверхности расположены внедренные частицы, состоящие из лёгких элементов. Этими частицами являются продукты износа абразивного инструмента: кубический нитрид бора, электрокорунд, алюмоборсиликатная связка.

Для количественной оценки степени шаржирования изображения, полученные в режиме отраженных электронов, обрабатывали в графическом редакторе GNU Image Manipulation Program 2.10.20. Для этого в растровом изображении обработанной поверхности изменяли контраст и яркость, а именно увеличивали уровень чёрного и экспозиция до максимального уровня. После этого цветовое распределение пикселей разбивают на два цвета – белый и чёрный. Для определения количества чёрных пикселей выделяли левую часть гистограммы, на которой отображаются более темные пиксели. В приведенном примере из 1572864 пикселей чёрными являются 2324.

Таким образом, способ определения степени шаржирования металлических поверхностей абразивными зёрнами из сверхтвердых абразивных материалов включающий получение изображений обработанной поверхности с помощью микроскопа, методом обратно-рассеянных электронов, дополнительную обработку изображения, в виде изменения контраста и яркости изображения, определение количества самых темных (черных) пикселей на растровом изображении посредством программного обеспечения, с последующим расчетом степени шаржирования, позволяет повысить надежность и точность оценки степени шаржирования поверхности при абразивной обработке.

Способ определения степени шаржирования металлических поверхностей абразивными зёрнами из сверхтвердых абразивных материалов, включающий получение изображений обработанной поверхности с помощью микроскопа и оценку количества шаржированных на обработанной поверхности частиц, отличающийся тем, что изображение получают методом обратно-рассеянных электронов, а для оценки количества шаржированных частиц выполняется дополнительная обработка изображения в виде изменения контраста и яркости изображения, определение количества самых темных (черных) пикселей на растровом изображении посредством программного обеспечения с последующим определением степени шаржирования по выражению:

,

где S – степень шаржирования, С1 – общее количество пикселей изображения, С2 – количество тёмных пикселей.



 

Похожие патенты:

Изобретение относится к методам исследования пищевой продукции, в частности к способу определения содержания жира в сыре. Способ предусматривает разбавление водой пробы молока, из которого он будет получен, гомогенизацию, облучение лазерным излучением с линейной поляризацией, у которой электрический вектор направлен перпендикулярно горизонтальной плоскости и с длиной волны в диапазоне от 0,44 мкм до 1,15 мкм, регистрацию интенсивности лазерного излучения, рассеянного назад компонентами молока лазерного излучения и светового потока, прошедшего через кювету, при этом массовую долю жира в сыре в пересчете на сухое вещество рассчитывают через зарегистрированные сигналы.

Группа изобретений относится к исследованию пищевой продукции в молочной и сыродельной промышленности, а также в сельском хозяйстве. Представлен способ определения жира, белка в молоке и жира в сыре, произведенном из этого молока, предусматривающий разбавление контролируемой пробы молока водой, гомогенизацию, облучение лазерным излучением, измерение рассеянного излучения.

Предложена устанавливаемая на транспортное средство система досмотра на основе обратного рассеяния, содержащая транспортное средство (1) и устройство визуализации на основе обратного рассеяния, причем диапазон сканирования устройства визуализации на основе обратного рассеяния является изменяемым. Достигается расширение диапазона сканирования устанавливаемой на транспортное средство системы досмотра на основе обратного рассеяния.

Использование: для досмотра транспортных средств. Сущность изобретения заключается в том, что система досмотра транспортных средств, перемещающихся своим ходом, включая находящихся в транспортных средствах грузы, пассажиров и водителя, содержит источник радиационного излучения с высокой проникающей способностью с коллиматором, устройство управления источником радиационного излучения, портал с консолями и установленными на них детекторами излучения и расположенными на стороне портала, противоположной источнику радиационного излучения, электронный тракт формирования и сбора сигналов с детекторов, и соединенное с ним устройство формирования теневого изображения, устройство управления источником радиационного излучения выполнено с использованием лазерных сканеров, один из которых расположен от зоны излучения на расстоянии не менее длины максимально допустимого порталом габарита инспектируемого объекта в направлении его движения и с разверткой луча в горизонтальной плоскости, другой лазерный сканер размещен в непосредственной близости от зоны облучения и с разверткой луча в вертикальной плоскости, соединенного с лазерными сканерами контроллера положения инспектируемого объекта по отношению к зоне облучения, определения части инспектируемого объекта, не подлежащей облучению, при этом перед порталом с консолями по ходу движения инспектируемого объекта дополнительно установлен источник радиационного излучения с меньшей проникающей способностью с механической разверткой пучка излучения по вертикали и детектирующей системой обратно рассеянного излучения.

Использование: для досмотра объекта на основе обратного рассеяния. Сущность изобретения заключается в том, что устройство визуализации на основе обратного рассеяния имеет состояние работы с установкой на транспортном средстве и состояние работы на земле, и в состоянии работы с установкой на транспортном средстве устройство визуализации на основе обратного рассеяния выполняет досмотровую работу, находясь в транспортном средстве; в состоянии работы на земле устройство визуализации на основе обратного рассеяния выполняет досмотровую работу, находясь на земле снаружи транспортного средства; и устройство визуализации на основе обратного рассеяния выполнено отдельным по отношению к транспортному средству и является перемещаемым между транспортным средством и землей для переключения между состоянием работы с установкой на транспортном средстве и состоянием работы на земле.

Использование: для регистрации нарушений в изделии. Сущность изобретения заключается в том, что направляют рентгеновские лучи веерного типа на изделие вдоль по меньшей мере одного направления, в котором часть рентгеновских лучей веерного типа отражается от изделия; региструют отраженные рентгеновские лучи веерного типа от изделия вдоль по меньшей мере одного направления и выполняют запись интенсивности регистрируемых отраженных высокоэнергетичных волн, после чего формируют одномерное изображение изделия из регистрируемых отраженных высокоэнергетичных волн.

Использование: для обследования оборудования, содержащего неправильные поверхности, сжатые пространства и другие труднодоступные места, на основании регистрации обратнорассеянного проникающего излучения. Сущность изобретения заключается в том, что система обследования с обратным рассеянием и быстрым позиционированием, содержащая: мобильное основание, выполненное с возможностью легкоуправляемого перемещения по земле; стрелу, соединенную с основанием и содержащую первый участок, второй участок и третий участок, а также первое подвижное соединение, соединяющее первый участок со вторым участком, и второе подвижное соединение, соединяющее второй участок с третьим участком; сканирующую головку, соединенную с третьим участком и содержащую: источник проникающего излучения для генерирования остронаправленного луча проникающего излучения, характеризующегося осью луча, и первый датчик, выполненный с возможностью регистрации рассеянного проникающего излучения; причем сканирующая головка выполнена с возможностью перемещения по меньшей мере с 3-7 степенями свободы относительно основания, а указанная система выполнена с возможностью захвата излучения обратного рассеяния во множестве ориентаций путем перемещения сканирующей головки при одновременном сохранении первым участком неподвижного положения по отношению к основанию, причем по меньшей мере один датчик приближения, прикрепленный к сканирующей головке, выполнен с возможностью регистрации первого заданного интервала между сканирующей головкой и объектом вдоль первой оси.

Использование: для регистрации обратнорассеянного проникающего излучения. Сущность изобретения заключается в том, что система обследования с обратным рассеянием с изменяемыми геометрическими характеристиками содержит матрицу датчиков излучения, включающую один или большее количество датчиков обратнорассеянного излучения.

Использование: для определения плотности путем облучения контролируемого вещества потоком квантов источника электромагнитного излучения. Сущность изобретения заключается в том, что определяют плотность путем облучения контролируемого вещества потоком квантов источника электромагнитного излучения, регистрации обратно рассеянного излучения, использования интенсивности счета детектора излучения и калибровочного графика, при этом измеряют интенсивность счета детектора излучения и интенсивность счета мониторного детектора при различной глубине погружения защитного экрана, определяют нормированную интенсивность счета детектора излучения, находят пространственное распределение плотности контролируемого вещества путем сравнения зависимости нормированной интенсивности счета детектора излучения от глубины погружения защитного экрана с калибровочными графиками нормированной интенсивности счета детектора излучения от глубины погружения защитного экрана, полученными для контролируемого вещества при различных распределениях его плотности по глубине.

Изобретение относится к области медицинской техники и предназначено для внутриполостной гамма-лучевой терапии злокачественных новообразований. Комплекс содержит средство для размещения больного, источник излучения, размещенный в средстве для его хранения, средство для перемещения источника излучения из средства для его хранения в выбранный канал облучения и его возврата по выполнении сеанса облучения и средства контроля и управления.

Группа изобретений относится к способу и системе проверки транспортного средства. Для проверки транспортного средства осуществляют идентификацию положения мобильного проверочного устройства в транспортном средстве, прием пользовательского ввода на основании группы жестов человека-оператора, создают запись в местоположении проверочного устройства в его поле зрения, отображают ее на графическом пользовательском интерфейсе.
Наверх