Способ определения меди (i)

Изобретение относится к аналитической химии, а именно, к методам определения меди (I) и может быть использовано при ее определении в технологических растворах, природных и техногенных водах гальванического производства. Способ определения меди (I) включает приготовление сорбента, раствора меди (II), добавлением гидроксиламина гидрохлорида для восстановления меди (II) до меди (I), извлечение меди (I) из раствора сорбентом и переведение ее в комплексное соединение на поверхности сорбента, отделение сорбента от раствора, измерение коэффициента диффузного отражения поверхностного комплекса меди (I) и оценку содержания меди по градуировочному графику, при этом в качестве сорбента используют силикагель, последовательно модифицированный полигексаметиленгуанидином и 2,2'-дихинолин-4,4'-дикарбоновой кислотой, а измерение коэффициента диффузного отражения осуществляют при 560 нм. Техническим результатом является снижение предела обнаружения и расширение диапазона определяемых концентраций. 4 пр.

 

Изобретение относится к области аналитической химии элементов, а именно, к методам определения меди и может быть использовано при ее определении в природных и техногенных водах, в том числе промывных водах гальванических производств.

Для определения меди в объектах различного вещественного состава используется сорбционно-фотометрический метод, основанный на образовании окрашенных ее соединений с функциональными группами сорбентов. Сорбционно-фотометрический метод не требует дорогостоящего оборудования, характеризуется высокой чувствительность и селективностью, простотой выполнения определения. Снижение пределов обнаружения и повышение селективности сорбционно-фотометрического определения достигается за счет предварительного концентрирования и последующего фотометрического определения меди непосредственно в фазе сорбента.

Для сорбционно-фотометрического определения меди в качестве органических реагентов широко используются N-гетероциклические основания (2,2'-дипиридил, 1,10-фенантролин, 2,2'-дихинолин и их производные), закрепленные на поверхности твердых матриц различной природы. Данные реагенты характеризуются высокой селективностью по отношению к меди (I) и образуют с ней интенсивно окрашенные комплексные соединения, что позволяет достигать высокой чувствительности определения меди. Присутствующую в растворе медь(II) восстанавливают до меди (I) восстановителями различной природы.

Известен способ твердофазно-спектрофотометрического определения меди (II) [Н.А. Гавриленко, Н.В. Саранчина, М.А. Гавриленко Твердофазно-спектрофотометрическое определение меди (II) с использованием неокупроина, иммобилизованного в полиметакрилатной матрице// Аналитика и контроль, 2016 - Т. 20, №4. С. 330-336]. Способ включает выполнение следующих операций:

- приготовление полиметакрилатной матрицы методом радикальной блосной полимеризации,

- вырезание пластины размером 6.0×8.0 мм массой около 0.05 г,

- приготовление 0.1 мас.% раствора неокупроина в этаноле,

- приготовление раствора меди(II),

- приготовление 10% раствора аскорбиновой кислоты;

- иммобилизацию неокупроина в полиметакрилатную матрицу в течение 10 минут,

- введение иммобилизованной полиметакрилатной матрицы в 50 мл раствора, содержащего медь и 0.1 мл 10% раствор аскорбиновой кислоты, и перемешивание в течение 15 мин (при этом происходит восстановление меди (II) до меди (I) и образование интенсивно окрашенного комплекса в желтый цвет),

- извлечение матрицы из раствора и измерение поглощения при 450 нм. Содержание меди находят по градуировочному графику, построенному в аналогичных условиях. Предел обнаружения при концентрировании меди (I) из 50 мл раствора равен 0.018 мг/л.

К недостаткам способа можно отнести высокий предел обнаружения, сложность и длительность процедуры получения полиметакрилатной матрицы.

Известен способ определения меди по реакции замещения свинца в диэтилдитиокарбаминате свинца на медь на поверхности сорбента силихром С-80 [В.М. Иванов, Г.А. Кочелаева Сорбционно-цветометрическое и тест-определение меди в водах//Вестник московского университета. Сер. 2. Химия. 2001. Т. 42. №12. С. 103-105], предусматривающий проведение следующих операций:

- подготовка (иммобилизация) сорбента, включающая в себя приготовление в делительной воронке диэтилдитиокарбаминате свинца в 50 мл хлороформа, перемешивание органического слоя с кремнеземом Силохром С-80 (последняя процедура повторяется дважды);

- отделение сорбента от органического слоя и высушивание в течение 1-2 суток;

- введение 0,3 г приготовленного сорбента в раствор, содержащий медь с рН 2-2,5, и перемешивание в течение 10 мин;

- отделение сорбента от раствора фильтрованием через стеклянный фильтр и высушивание на воздухе;

- измерение коэффициента диффузного отражения при 440 нм или цветометрических характеристик.

Минимально достигаемый предел обнаружения при использовании 0,3 г сорбента составляет 0,1 мкг. Линейность градуировочного графика сохраняется до 50 мкг меди на 0,3 г сорбента.

К недостаткам способа можно отнести длительность приготовления сорбента, многостадийность метода, использование вредного вещества - хлороформа, низкая селективность реагента диэтилдитиокарбамината свинца.

Наиболее близким к предлагаемому способу по технической сущности и достигаемым результатам является способ определения меди (I) с использованием кремнезема [RU №2374637, G01N 31/22, опубл. 27.11.2009], последовательно модифицированного полигексаметиленгуанидином и батокупроиндисульфокислотой. Способ предусматривает выполнение следующих операций:

- приготовление сорбента, основанное последовательной обработке силикагеля водными растворами полигексаметиленгуанидина и батокупроиндисульфокислотой;

- в градуированную пробирку вводили раствор меди (II) с рН 5-8;

- добавляли 0,01 М раствор гидроксиламина для восстановления меди (II) до меди (I)

- вносили 0,1 г сорбента и интенсивно перемешивали;

- сорбент отделяли от раствора декантацией, высушивали на воздухе; - измеряли коэффициент диффузного отражения при 480 нм;

- находили содержание меди по градуировочному графику.

Техническим результатом является снижение предела обнаружения и расширение диапазона определяемых содержаний.

Указанный технический результат достигается тем, что в способе определения меди (I), включающем приготовление сорбента, раствора меди (II), добавлением гидроксиламина гидрохлорида для восстановления меди (II) до меди (I), извлечение меди (I) из раствора сорбентом, переведение ее в комплексное соединение на поверхности сорбента, отделение сорбента от раствора, измерение коэффициента диффузного отражения поверхностного комплекса меди (I) и оценку содержания меди по градуировочному графику, новым является то, что в качестве сорбента используют силикагель, последовательно модифицированный полигексаметиленгуанидином и 2,2'-дихинолин-4,4'-дикарбоновой кислотой, а измерение коэффициента диффузного отражения осуществляют при 560 нм.

Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данных и смежных областей техники и, следовательно, обеспечивают заявляемому решению соответствие критериям «новизна» и «изобретательский уровень».

Сущность способа заключается в том, что медь (I) извлекается из водных растворов сорбентом на основе кремнезема, последовательно модифицированного полигексаметиленгуанидином и 2,2'-дихинолин-4,4'-дикарбоновой кислотой, в диапазоне рН 2-9, однако количественное извлечение (степень извлечения ≥99%) достигается в диапазоне рН 4,5-7,5. В процессе сорбции образуется окрашенный в сиреневый цвет комплекс меди (I) с 2,2'-дихинолин-4,4'-дикарбоновой кислотой. Сорбция в статическом режиме протекает достаточно быстро (время установления сорбционного равновесия не превышает 5 мин) и количественно.

Способ осуществляют следующим образом.

К навеске силикагеля 10 г по каплям вводят 4%-ый раствор полигексаметиленгуанидина при постоянном помешивании, после чего силикагель тщательно промывают дистиллированной водой и добавляют 100 мл 0,2%-ого раствора 2,2'-дихинолин-4,4'-дикарбоновой кислоты, интенсивно перемешивают в течение 15 мин, дважды промывают дистиллированной водой. Сорбент отделяют от раствора декантацией и высушивают на воздухе. В исследуемый раствор, содержащий медь (I), добавляют 0,1М гидроксиламин гидрохлорида, буферный раствор с рН 6, вносят сорбент, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией, помещают во фторопластовую кювету и измеряют коэффициент диффузного отражения при 560 нм. Содержание меди находят по градуировочному графику, построенному в условиях определения. Линейность градуировочного графика сохраняется в диапазоне 0,01 - 15 мкг меди на 0,1 г сорбента. Предел обнаружения равен 0,001 мкг меди на 0,1 г сорбента.

Пример 1 (прототип). К 10 мл раствора с рН 7, содержащего 1,0 мкг меди(II), вводят 1 мл 0,01М солянокислого гидроксиламина, вносят 0,1 г сорбента с функциональными группами батокупроина, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией, помещают во фторопластовую кювету и измеряют коэффициент диффузного отражения при 480 нм.

Количество меди находят по градуировочному графику, построенному в аналогичных условиях. Найдено 1,06±0,05 мкг.

Пример 2 (предлагаемый способ). К 10 мл раствора, содержащего 0,1 мкг меди(II), вводят 1 мл 0,01М солянокислого гидроксиламина, уксусно-ацетатный буферный раствор с рН 6, вносят 0,1 г сорбента с функциональными группами 2,2'-дихинолин-4,4'-дикарбоновой кислоты, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией, помещают во фторопластовую кювету и измеряют коэффициент диффузного отражения при 560 нм.

Количество меди находят по градуировочному графику, построенному в аналогичных условиях. Найдено 0,11±0,02 мкг.

Пример 3 (предлагаемый способ). К 10 мл раствора, содержащего 3,0 мкг меди(II), вводят 1 мл 0,01М солянокислого гидроксиламина, уксусно-ацетатный буферный раствор с рН 6, вносят 0,1 г сорбента с функциональными группами 2,2'-дихинолин-4,4'-дикарбоновой кислоты, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией, помещают во фторопластовую кювету и измеряют коэффициент диффузного отражения при 560 нм.

Количество меди находя по градуировочному графику, построенному в аналогичных условиях. Найдено 3,08±0,05 мкг.

Пример 4 (предлагаемый способ). К 10 мл раствора, содержащего 10,0 мкг меди (II), вводят 1 мл 0,1 М солянокислого гидроксиламина, уксусно-ацетатный буферный раствор с рН 6, вносят 0,1 г сорбента с функциональными группами 2,2'-дихинолин-4,4'-дикарбоновой кислоты, интенсивно перемешивают в течение 5 мин, сорбент отделяют от раствора декантацией, помещают во фторопластовую кювету и измеряют коэффициент диффузного отражения при 560 нм.

Количество меди находят по градуировочному графику, построенному в аналогичных условиях. Найдено 9,9±0,2 мкг.

Способ характеризуется высокой чувствительностью, селективностью, простотой выполнения и не требует использования дорогостоящего оборудования и вредных веществ. Использование силикагеля, последовательно модифицированного полигексаметилен гуанидином и 2,2'-дихинолин-4,4'-дикарбоновой кислотой, позволяет снизить предел обнаружения меди в три раза по сравнению с прототипом и расширить диапазон ее определяемых содержаний.

Способ определения меди (I), включающий приготовление сорбента, раствора меди (II), добавлением гидроксиламина гидрохлорида для восстановления меди (II) до меди (I), извлечение меди (I) из раствора сорбентом и переведение ее в комплексное соединение на поверхности сорбента, отделение сорбента от раствора, измерение коэффициента диффузного отражения поверхностного комплекса меди (I) и оценку содержания меди по градуировочному графику, отличающийся тем, что в качестве сорбента используют силикагель, последовательно модифицированный полигексаметиленгуанидином и 2,2'-дихинолин-4,4'-дикарбоновой кислотой, а измерение коэффициента диффузного отражения осуществляют при 560 нм.



 

Похожие патенты:

Настоящее изобретение относится к датчику, содержащему проточную кювету, устройство обнаружения и контроллер. Проточная кювета содержит пассивирующий слой, имеющий противолежащие поверхности и реакционную зону на первой из указанных противолежащих поверхностей.

Группа изобретений относится к области медицины, а именно к онкологии, и касается способов выявления онкологических заболеваний и устройства для их осуществления. Способы выявления онкологических заболеваний основаны на определении в пробе биологического материала содержания нитрит-ионов или раздельном определении содержания нитрат- и нитрит-ионов посредством проведения реакции диазотирования и азосочетания.

Изобретение относится к способу для калибровки камеры с целью определения аналита в пробе. Способ включает в себя: а) обеспечение набора систем цветовых координат; б) обеспечение набора (122) проверочных проб; в) нанесение проверочных проб (124) на набор (126) тест-элементов (128), каждый из которых имеет по меньшей мере одно тестовое поле (130), содержащее индикаторный реагент; г) получение посредством камеры (116) изображений окрашенных тестовых полей (130); д) генерирование цветовых координат для изображений окрашенных тестовых полей (130), выполняемое посредством систем цветовых координат из набора систем цветовых координат, в результате чего создают набор цветовых координат для проверочных проб (124) и для систем цветовых координат; е) обеспечение набора функций кодирования; ж) преобразование набора цветовых координат, сгенерированного на шаге д), в набор измеренных концентраций, выполняемое посредством набора функций кодирования; и з) сравнение набора измеренных концентраций с известными концентрациями в проверочных пробах (124) из набора (122) проверочных проб и определение наиболее подходящей системы цветовых координат.

Настоящее изобретение относится к инструменту, с помощью которого можно анализировать мишень в образце посредством простых действий, и размер которого можно уменьшать, и способу анализа с использованием этого инструмента. Аналитическая ячейка по настоящему изобретению включает: основной субстрат, покрывающий элемент отверстия для ввода образца и покрывающий элемент выпускного отверстия для газа.

Изобретение относится к области геоэкологии и может быть использовано для идентификации микробного загрязнения водной среды. С этой целью на территории пастбищного скотоводства, по карта-схеме крупного масштаба, М 1:200000 и крупнее, определяют место выпаса скота.

Изобретение относится к аналитической химии, а именно к способу определения нитрит-ионов. Способ включает обработку анализируемой пробы растворами органических реагентов, один из которых на основе п-нитроанилина, а другой дифениламина, выделение из полученной реакционной смеси мицеллярной фазы в присутствии поверхностно-активного вещества и оценку содержания нитрит-ионов.

Изобретение относится к области измерительной техники и касается способа определения концентрации свинца (II) в водных образцах. Способ включает в себя приготовление размещенной на носителе полимерной сенсорной пленки, ее контакт с испытуемым образцом и определение концентрации свинца путем сравнения оптической плотности с градуировочной шкалой на длине волны света 580 нм.

Группа изобретений относится к области аналитической химии. Раскрыт биомедицинский бумажный чувствительный элемент для определения концентрации аналитов в текучих средах, содержащий множество осевых симметричных тестовых зон, которые расходятся лучами по направлению наружу от центральной точки и каждая из которых отделена перегородками из восковой краски и содержит в себе тестовый реагент, и эталонный участок, который окружает указанное множество осевых тестовых зон и который содержит множество подобластей калибровочного цвета, содержащих отдельный предварительно задаваемый цвет для каждой подобласти для сравнения с каждой осевой тестовой зоной из соответствующего множества осевых тестовых зон.

Группа изобретений относится к области медицины и аналитической технике. Раскрыт способ изготовления цветового шаблона, представляющего собой плоскую бумажную или пластиковую карточку, на которой имеется область для размещения тест-полоски и набор калибровочных зон для идентификации цвета.

Изобретение относится к способу определения свинца(II) в водных объектах окружающей среды и биологических образцах. Способ включает приготовление полимерной сенсорной пленки, которую помещают в испытуемый образец и по изменению цвета полимерной сенсорной пленки определяют наличие в нем свинца(II), количество которого определяют по калиброванной цветовой шкале, предварительно полученной из не менее 5-ти испытуемых образцов с известными концентрациями свинца.

Изобретение относится к области контроля загрязнения окружающей среды, а именно к средствам для обнаружения и полуколичественного определения отравляющих веществ, аварийно химически опасных веществ в воздухе и в капельно-жидком состоянии на поверхностях различных объектов. Прибор химической разведки содержит корпус с откидной крышкой, образующие в закрытом положении футляр с рычажной защелкой, и размещенные в корпусе источник электропитания, побудитель расхода воздуха, воздуховод с каналом для забора прокачиваемого воздуха, гнездо для размещения индикаторного средства, через которое осуществляется прокачивание воздуха побудителем расхода воздуха, устройство подогрева индикаторного средства, включающее датчик температуры и нагревательный элемент, а также блок управления работой прибора, содержащий панель управления и индикаторную панель, при этом в качестве индикаторного средства используется индикаторный плоский элемент, причем прибор дополнительно содержит модуль предварительного нагрева ИПЭ, снабженный датчиком температуры для ручного включения модуля предварительного нагрева ИПЭ, а в корпусе имеется связанный с блоком управления узел обработки индикаторного плоского элемента, состоящий из соединенных нижней и верхней откидной частей, образующих в закрытом положении герметичное соединение, при этом в верхней откидной части узла обработки индикаторного плоского элемента выполнен входной участок канала воздуховода с установленным внутри него устройством считывания окраски индикаторного плоского элемента, состоящего из фотодиода и излучающего трехцветного светодиода, а в нижней части узла обработки индикаторного плоского элемента выполнен следующий участок канала воздуховода с наружным упомянутым гнездом для размещения индикаторного плоского элемента с возможностью полного перекрытия его формованными поверхностями канала воздуховода и расположенным под гнездом нагревательным элементом, при этом в корпусе дополнительно установлен влагоотделитель, соединенный с участком канала воздуховода, относящимся к нижней части узла обработки индикаторного плоского элемента, и формирующий выходной участок канала воздуховода для жидкости, а также выходной участок канала воздуховода для прокаченного воздуха, соединенный с побудителем расхода воздуха. Техническим результатом является улучшение технических характеристик прибора. 17 з.п. ф-лы, 24 ил.
Наверх