Устройство определения мест расположения дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами

Изобретение относится к измерительной технике. Устройство поиска дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами, состоит из неполяризующихся электродов сравнения, рамки, тросика фуникулера, сматывающего устройства, барабана, счетчика длины кабеля, записывающего прибора, при этом на рамке жестко закреплены неполяризующиеся электроды сравнения, каждый электрод рамки соединен со жгутом проводов, все соединения проводов с электродами сравнения герметичны, и указанная рамка закреплена на тросике фуникулера, проходящего над трубопроводом между опорами, расположенными по берегам водной преграды над осью трубопровода. Техническим результатом является возможность измерять одновременно продольный и поперечный градиенты потенциала трубопровода на подводном переходе с определенным шагом, определять дефекты в изоляционном покрытии и фиксировать их местоположение на трубопроводе относительно ближайшего контрольно-измерительного пункта. 2 з.п. ф-лы, 2 ил.

 

Устройство определения мест расположения дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами, относится к системе определения мест расположения дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами.

Наиболее близкими к заявленному техническому решению являются: комплекс бесконтактного измерения тока «БИТА-1» [1], комплект приборов «Поиск 021» [2] и «индикатор повреждения изоляции КОРД-ИПИ» [3].

Существенным ограничением в применении каждого из указанных устройств является применение специального генератора сигналов заданной частоты, требующего подключения к трубопроводу. Ограничением также является то, что проведение работ по определению местоположения дефекта в изоляционном покрытии трубопровода, уложенного под водной преградой, возможно только в зимний период т.е. «с поверхности льда».

Технической задачей, решаемой с помощью заявленного технического решения, является создание устройства, позволяющего проводить работы по определению мест расположения дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами в период отсутствия ледяного покрова (весенне-осенний период) по продольному и поперечному градиентам потенциала одновременно. Это исключает возможность получения ошибочных данных в обнаружении дефекта в изоляционном покрытии и позволяет точно фиксировать его местонахождение на трубопроводе относительно ближайшей опоры без подключения какого-либо генератора сигналов к трубе.

Технический результат, который может быть достигнут с помощью настоящего технического решения, состоит в создании рамки из диэлектрического материала (например, из трубы ПВХ или полипропиленовой трубы) цельной сварной конструкции в виде прямоугольного треугольника с неполяризующимися электродами сравнения, располагающимися по углам треугольника на фиксированном расстоянии друг от друга и фуникулера, установленного над осью обследуемого трубопровода с опорами по обеим берегам водной преграды. Опоры предназначены для удержания рамки над осью трубы с фиксацией рамки на тросике фуникулера и контроля расстояния перемещения рамки вдоль оси трубопровода. Это позволяет измерять одновременно продольный и поперечный градиенты потенциала трубопровода на подводном переходе с определенным шагом, определять дефекты в изоляционном покрытии и фиксировать их местоположение на трубопроводе относительно ближайшего контрольно-измерительного пункта.

На фиг. 1 и фиг. 2 представлено устройство определения мест расположения дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами. Устройство определения мест расположения дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами, изображенное на чертежах, состоит из опоры фуникулера со шкивом 1, опоры фуникулера 2 с барабаном, рамки треугольной формы 3, неполяризующихся электродов сравнения 4, 5, 6, жгута проводов от электродов сравнения 7, сматывающего устройства жгута кабелей и тросика фуникулера 8, тросика фуникулера 9, барабан фуникулера 10, счетчика длины кабеля 11 и записывающего прибора 12.

Устройство состоит из рамки 3, которая выполнена в виде прямоугольного треугольника. По углам рамки 3 закреплены идентичные неполяризующиеся электроды сравнения 4, 5, 6. От каждого неполяризующегося электрода сравнения 4, 5, 6 в общий жгут проводов 7 выходит по одному проводу. Все соединения проводов с электродами сравнения 4,5,6 герметичны. Общий жгут проводов 7, сматывающее устройство жгута кабелей и тросика фуникулера 8, совмещенное со счетчиком длины кабеля 11, записывающим прибором 12 и барабаном 10 объединено в едином корпусе 13 и располагается на опоре 2. Один из катетов рамки 3, располагается параллельно оси трубопровода и по своим углам неподвижно соединен с тросиком фуникулера 9. Фуникулер 9 располагается строго над трубой с опорами 1 и 2 на противоположных берегах водной преграды.

Устройство работает следующим образом.

Определяют ось трубопровода на каждом берегу водной преграды и устанавливают опоры 1 и 2 над осью трубопровода так, чтобы тросик фуникулера 9 находился над осью подводного трубопровода. Рамку 3 крепят к тросику фуникулера 9 жестко, без проскальзывания и помещают в воду рядом с опорой 2, совмещенной со сматывающим устройством тросика фуникулера 8 так, чтобы на рамке 3 два неполяризующихся электрода сравнения 4, 5 были над трубопроводом и параллельно оси трубопровода, а третий неполяризующийся электрод сравнения 6, располагающийся в углу рамки 3 был направлен под углом 90 градусов к оси трубопровода и направлен вниз по течению, если оно есть. Счетчик 11 в корпусе 13 устанавливают на нулевую отметку, включают записывающий прибор 12 и делают первое измерение продольного и поперечного градиентов потенциала. Каждое последующее измерение можно осуществлять дискретно, либо производить непрерывную запись, если позволяет записывающий прибор 12. Проведя дискретные измерения с шагом 2 метра (или непрерывно) по всей ширине водной преграды, снимают с записывающего прибора 12 полученную информацию для дальнейшего изучения. По величине измеренных градиентов потенциала судят о наличии дефектов в изоляционном покрытии трубопровода. Возможно применение вольтметра с высоким входным сопротивлением взамен записывающего прибора 12 и в этом случае величину градиента записывают вручную в рабочей тетради.

Применением заявленного устройства поиска дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами, достигается высокая точность обнаружения дефектов в изоляционном покрытии.

Устройство поиска дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами отличается:

- относительной простотой конструкции, неприхотливостью в обращении, возможностью длительного и многократного использования;

- одновременным получением значений градиентов продольного и поперечного потенциалов и определением местоположения дефектов в изоляционном покрытии на трубопроводе в русловой части подводного перехода с привязкой к ближайшему контрольно-измерительному пункту;

- возможностью проведения работ по обследованию трубопроводов в теплое время года;

- отсутствием необходимости применения генератора импульсов и источника питания (или станции катодной защиты).

Литература

1. БИТА-1 Комплекс бесконтактного измерения тока в подземных газопроводах. Руководство по эксплуатации. ДСШК. 412239.001 РЭ.

2. Каталог продукции ООО «Парсек». Приборы и системы коррозионного мониторинга и электрохимической защиты от коррозии. 2017 год. Комплекс приборов «Поиск-021».

3. Индикатор повреждения изоляции КОРД-ИПИ-02. Руководство по эксплуатации.

1. Устройство поиска дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами, состоящее из неполяризующихся электродов сравнения, рамки, тросика фуникулера, сматывающего устройства, барабана, счетчика длины кабеля, записывающего прибора, при этом на рамке жестко закреплены неполяризующиеся электроды сравнения, каждый электрод рамки соединен со жгутом проводов, все соединения проводов с электродами сравнения герметичны, и указанная рамка закреплена на тросике фуникулера, проходящего над трубопроводом между опорами, расположенными по берегам водной преграды над осью трубопровода.

2. Устройство по п. 1, отличающееся тем, что неполяризующихся электродов три.

3. Устройство по п. 1, отличающееся тем, что неполяризующиеся электроды являются сменными.



 

Похожие патенты:

Изобретение относится к области неразрушающего электрохимического контроля состояния поверхности металлических образцов и может быть использовано для оценки состояния материалов при длительном содержании в природной воде, в частности материалов подводных устройств длительной эксплуатации. Устройство для неразрушающего электрохимического контроля состояния поверхности металлических образцов в электролите включает цепь для измерения потенциалов электродов, при этом цепь состоит из корпуса электрохимической ячейки, выполненного из изолирующего материала и имеющего пазы для размещения в них токовых электродов, регистрирующих электродов, тестируемых образцов, и концентраторов тока, установленных между регистрирующими электродами и тестируемыми образцами, над которыми сверху в тех же пазах размещены токоограничивающие изоляционные заглушки, а также она состоит из генератора тока, соединенного через резисторы посредством провода с токовыми электродами, помещенными в корпус электрохимической ячейки, заполненной электролитом, в который также погружены регистрирующие электроды, соединенные проводами с входами измерителей потенциалов, и тестируемые образцы, причем токовые и регистрирующие электроды выполнены из прямоугольных кусков сетки из нержавеющей стали и имеют корпус электрода, выполненный из изоляционного материала и имеющий полость для вставления сетки, при этом нижняя часть корпуса электрода выполнена перфорированной, предназначенной для свободного протекания электролита в электрохимической ячейке и электрического контакта электролита и металлической сетки, которая в свою очередь соединена посредством лепестка, болта и шайбы с проводами, соединяющими соответствующий электрод с генератором тока и измерителем потенциала, а токовые и регистрирующие электроды, корпус для крепления образцов, концентратор тока и изоляционные заглушки имеют одинаковую ширину, равную ширине электрохимической ячейки.

Изобретение относится к способам определения скорости коррозии в автоматизированных системах коррозионного мониторинга. Способ определения скорости и типа коррозии заключается в том, что на внутренней поверхности образца-свидетеля, изготовленного в виде металлической пластины с внешней и внутренней противоположными параллельными поверхностями, размещают совмещенный пьезоэлектрический преобразователь, акустический излучатель и акустический приемник, внешнюю поверхность образца-свидетеля помещают в среду, вызывающую ее коррозию, а внутреннюю поверхность образца-свидетеля закрывают защитным кожухом, предотвращающим контакт со средой, на вход/выход совмещенного пьезоэлектрического преобразователя подают излучающий сигнал нормального зондирования в виде электрического импульса, который возбуждает в образце-свидетеле импульс ультразвуковой продольной акустической волны зондирующего сигнала нормального зондирования, и определяют значение текущей толщины образца-свидетеля при нормальном зондировании, на вход акустического излучателя подают излучающий сигнал наклонного зондирования в виде электрического импульса, по разнице моментов времени подачи на вход акустического излучателя излучающего сигнала наклонного зондирования и фиксации на выходе акустического приемника отраженного донного сигнала наклонного зондирования определяют значение текущей толщины образца-свидетеля для наклонного зондирования, на основе сопоставления значений текущей толщины образца-свидетеля, определенной для нормального зондирования, и толщины образца-свидетеля для нормального зондирования вычисляют скорость коррозии, протекающей на внешней поверхности металлической пластины образца-свидетеля, на основе сопоставления значения текущей толщины образца-свидетеля для нормального зондирования и текущей толщины образца-свидетеля для наклонного зондирования судят о типе коррозии, протекающей на внешней поверхности металлической пластины образца-свидетеля, при этом место расположения на внутренней поверхности образца-свидетеля совмещенного пьезоэлектрического преобразователя, материал излучающей и принимающей призм, углы наклонных граней и их место расположения на внутренней поверхности образца-свидетеля выбирают такими, чтобы область рассеяния совпадала с областью зондирования на внешней поверхности образца-свидетеля, при этом акустический излучатель может возбуждать в образце-свидетеле зондирующий сигнал, а акустический приемник принимать из материала образца-свидетеля донный сигнал как в виде импульсов ультразвуковой поперечной, так и продольной акустической волны.

Изобретение относится к устройствам для исследования коррозионной стойкости конструкционных материалов высокотемпературных устройств, преимущественно реакторов для работы с расплавами галогенидов щелочных металлов, применяемых в пирохимической и пирометаллургической переработке отработавшего ядерного топлива.

Изобретение относится к обеспечению промышленной безопасности опасных производственных объектов и предназначено для работы в составе системы катодной защиты для выявления факта электрохимической коррозии металла подземных сооружений. Техническим результатом изобретения является обеспечение поддержания стабильного электродного потенциала электрода сравнения.

Изобретение относится к неразрушающему контролю объектов нефтегазовой сферы и может быть использовано для измерения параметров процессов коррозии и эрозии металлов в промысловых средах с целью диагностики состояния технологического оборудования и трубопроводов. Техническим результатом изобретения является реализация мониторинга коррозионно-эрозионной активности транспортируемых многофазных промысловых сред по всему сечению трубопровода посредством одного устройства.

Изобретение относится к неразрушающему контролю объектов нефтегазовой сферы и может быть использовано для измерения параметров процессов коррозии в трубопроводах, транспортирующих промысловые среды. Система детектирования «ручейковой» коррозии включает установленные в трубопроводе в непосредственной близости друг от друга датчики скорости коррозии, реализующие метод электрического сопротивления и метод сопротивления линейной поляризации, причем первый измерительный зонд датчика скорости коррозии, реализующего метод электрического сопротивления, установлен в центральной части трубопровода, а второй измерительный зонд датчика скорости коррозии, реализующего метод электрического сопротивления, и измерительный зонд датчика скорости коррозии, реализующего метод сопротивления линейной поляризации, установлены заподлицо с нижней образующей трубопровода, при этом измерительный зонд датчика скорости коррозии, реализующего метод сопротивления линейной поляризации, соединен с измерительным преобразователем датчика скорости коррозии, реализующим метод сопротивления линейной поляризации, а также обеспечивающим реализацию функции оценки минерализации среды, при этом в нее дополнительно введен процессор, выполненный с возможностью передачи данных в компьютерную сеть, а датчик скорости коррозии, реализующий метод электрического сопротивления, выполнен многоканальным и содержит несколько дополнительных измерительных зондов, установленных заподлицо с нижней образующей трубопровода, соединенных своими выходами с многоканальным измерительным преобразователем датчика, датчики скорости коррозии через свои измерительные преобразователи имеют постоянную связь с процессором посредством резидентных интерфейсов.

Изобретение относится к области электрохимической защиты от коррозии и предназначено для работы в составе системы катодной защиты для выявления участков перезащиты металла подземных сооружений, например трубопроводов. Технический результат заключается в обеспечении безопасного оперативного обнаружения участков перезащиты металла.

Изобретение относится к области электрохимической защиты подземных сооружений от коррозии и предназначено для работы в составе системы катодной защиты для выявления факта коррозии металла, например, трубопроводов. Способ обнаружения электрохимического осаждения меди включает периодическое измерение естественного потенциала между выносным электродом и медносульфатным электродом сравнения ΔU1i, при этом дополнительно, с аналогичным периодом измерения естественного потенциала между выносным электродом и медносульфатным электродом сравнения ΔU1i измеряют естественный потенциал между медным электродом и медносульфатным электродом сравнения ΔU2i, вычисляют разность полученных значений ΔU1i и ΔU2i, сравнивают полученную разность с разностью предыдущих вычислений ΔU1i-1 и ΔU2i-1 и при ΔU1i - ΔU2i → 0 оповещают о начале электрохимического осаждения меди на выносном электроде.

Изобретение относится к области защиты от коррозии промысловых нефтепроводов и может быть использовано для оценки стойкости трубопроводных сталей к "канавочной" ("ручейковой") коррозии. Сущность: осуществляют изготовление пластины из анализируемой стали, ее изгиб до необходимой стрелы прогиба, термостатирование в агрессивной среде, осмотр после испытаний, оценку стойкости к коррозии.

Изобретение относится к способу механических испытаний металлических материалов, а именно к созданию устройства, позволяющего циклически деформировать изгибом образцы металлических материалов, погруженных в электролит, с одновременным непрерывным измерением электродного потенциала образца. Устройство состоит из емкости для электролита, располагающейся на телескопическом столике с обеспечением возможности регулировки уровня жидкости относительно верхней и нижней рычажных баз, закрепленной на несущей раме верхней рычажной базы с цилиндрической перекладиной с обеспечением возможности вращения вдоль своей оси и закрепления верхнего конца образца, последовательно соединенных сервопривода, диска и рычага, подвижной и стабилизированной модулями линейного перемещения в вертикальном направлении нижней рычажной базы с цилиндрической перекладиной, с обеспечением возможности вращения вдоль своей оси и закрепления нижнего конца образца в электролите, при использовании образца в качестве рабочего электрода, параллельно подключаемого со стандартным электродом сравнения к электронному импульсному потенциостату.

Изобретение относится к области ядерной энергетики, в частности к средствам контроля состава солевых смесей жидкосолевого реактора и исследования коррозионной стойкости конструкционных материалов реактора. Устройство измерения окислительно-восстановительного потенциала расплавленных смесей на основе системы LiF-BeF2 содержит изолированные друг от друга молибденовую подложку динамического бериллиевого электрода, молибденовый индикаторный электрод и противоэлектрод, при этом молибденовая подложка динамического бериллиевого электрода и молибденовый индикаторный электрод размещены и загерметизированы с помощью силиконового узла в корундовой двухканальной трубке, герметично установленной с одного конца в стальную трубку с прикрепленной к ней с другого конца стальной втулкой с футоркой, на наружной поверхности которой закреплен противоэлектрод в виде трубы из плотного графита с отверстиями, причем стальная трубка, стальная втулка с футоркой и противоэлектрод образуют единый корпус, а внутри футорки вкручен изолятор из нитрида бора с каналами, через которые проходят молибденовая подложка бериллиевого электрода и индикаторный электрод, при этом площадь поверхности противоэлектрода, предназначенной для погружения в расплав, не менее чем в 5 раз превышает площадь погружаемой в расплав поверхности молибденовой подложки динамического бериллиевого электрода. Техническим результатом является безотказность и увеличение длительности работы противоэлектрода, а также воспроизводимость морфологии электроосажденного динамического бериллиевого электрода на молибденовой подложке и воспроизводимость параметров его растворения в ходе измерений окислительно-восстановительного потенциала расплавленных смесей на основе системы LiF-BeF2 в жидкосолевом реакторе и повышение надежности работы устройства. 1 з.п. ф-лы, 2 ил.
Наверх