Шихта для получения пористого проницаемого каталитического материала

Изобретение относится к области порошковой металлургии, в частности к составам шихты для получения пористого проницаемого каталитического материала методом самораспространяющегося высокотемпературного синтеза, и может быть использовано для изготовления фильтрующих элементов каталитических нейтрализаторов отработавших газов двигателей внутреннего сгорания. Шихта для получения пористого проницаемого каталитического материала содержит, мас.%: железная окалина 20,02-24,8, оксид хрома (III) 10,5-11,5, хром 6,75-6,85, никель 5,5-5,9, алюминий 12,4-12,6, шунгит 30,0-50,0, медь 1,18-2,0. Изобретение направлено на обеспечение качественной каталитической очистки двигателей внутреннего сгорания от отработавших газов за счет повышения устойчивости материала к динамическим и статическим нагрузкам. 1 пр., 1 табл.

 

Изобретение относится к порошковой металлургии, в частности к составам шихты для получения пористого проницаемого материала методом самораспространяющегося высокотемпературного синтеза (СВС), применяемого для изготовления фильтрующих элементов, пламегасителей и каталитических фильтров нейтрализаторов отработавших газов двигателей внутреннего сгорания с жесткими требованиями к среднему размеру пор.

Известна шихта для получения пористого проницаемого материала, содержащая железную окалину, оксид алюминия, алюминий и ферросилиций ФС-70 при следующем соотношении компонентов, мас. %: железная окалина 41-43, оксид алюминия 37-40, ферросилиций ФС-70 1-5, алюминий - остальное. Пористый проницаемый материал получают из порошковой шихты методом СВС. Материал имеет упорядоченную структуру порового пространства со средним размером пор 375 мкм, механическую прочность до 11 МПа (патент RU 2154550, МПК7 B22F 3/23, С22С 29/12).

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является шихта для получения пористого проницаемого материала, содержащая железную окалину, оксид хрома (IV), хром, никель, алюминий, при следующем соотношении компонентов, мас. %: железная окалина 45-50; алюминий 12,5-27,5; оксид хрома (IV) 17,5-18,5; хром 5-9; никель 5-20. Пористый проницаемый материал получают из порошковой шихты методом СВС. Материал имеет упорядоченную структуру порового пространства со средним размером пор 360 мкм, механическую прочность до 10,5 МПа (патент RU 1779681, МПК5 С04В 38/02, С04В 35/65).

Однако вышеописанные смеси имеют следующие общие недостатки: - отсутствие обеспечения изделиями, изготовленными на основе получаемых пористых проницаемых материалов, каталитической очистки отработавших газов двигателей внутреннего сгорания и ограничение сферы применения получаемых пористых проницаемых материалов вследствие невысокой механической прочности пористых проницаемых материалов и значительного среднего размера пор в пористых проницаемых материалах, не позволяющего организовать качественную очистку отработавших газов за счет каталитического эффекта потому, что перенос вещества в порах осуществляется исключительно путем молекулярной диффузии по закону Фика. В действительности, присутствие диффузии обусловлено наличием неупорядоченности пор и их высокой извилистостью, и перенос вещества зависит от величины эффективного коэффициента диффузии, что имеет важное значение в процессах гетерогенного катализа. Таким образом, пористые проницаемые материалы, описанные выше, применяются преимущественно для изготовления фильтрующих элементов;

- пониженная устойчивость к динамическим и статическим нагрузкам и значительная материалоемкость изделий, изготовленных на основе получаемых пористых проницаемых материалов, при жестких технологических требованиях к прочности изделий, изготовленных на основе получаемых пористых проницаемых материалов, а также дополнительное ограничение сферы применения получаемых пористых проницаемых материалов вследствие низкой механической прочности последних, так как наличие в шихтах оксидов (железной окалины, оксида алюминия, оксида хрома) приводит к уменьшению механической прочности материала при отсутствии раскислителя.

Предлагаемое изобретение решает задачу обеспечения изделиями, изготовленными на основе получаемого пористого проницаемого материала, качественной каталитической очистки отработавших газов двигателей внутреннего сгорания, расширения сферы применения этого материала, повышения устойчивости к динамическим и статическим нагрузкам, снижения себестоимости и материалоемкости изделий, изготовленных на основе получаемых пористых проницаемых материалов.

Поставленная задача решается тем, что шихта для получения пористого проницаемого каталитического материала, содержащая железную окалину, оксид хрома, хром, никель, алюминий, дополнительно содержит шунгит и медь при следующих соотношениях компонентов, мас. %:

Железная окалина 20,02-24,8
Оксид хрома(III) 10,5-11,5
Хром 6,75-6,85
Никель 5,5-5,9
Алюминий 12,4-12,6
Шунгит 30,0-50,0
Мель 1,18-2,0

Качественная каталитическая очистка отработавших газов двигателей внутреннего сгорания изделиями, изготовленными на основе получаемого пористого проницаемого материала, расширение сферы применения этого материала, повышение устойчивости к динамическим и статическим нагрузкам и снижение себестоимости и материалоемкости изделий, изготовленных на основе получаемых пористых проницаемых материалов, достигаются значительным уменьшением среднего размера пор в пористых проницаемых материалах (см. Таблицу), позволяющим организовать очистку отработавших газов от оксидов углерода, оксидов азота, углеводородов, твердых частиц за счет каталитического эффекта, обусловленного использованием в составе шихты оксида хрома, хрома, никеля и меди для получения в процессе СВС медно-хромокислых никелидов, являющимися катализаторами окисления продуктов неполного сгорания топлива, а также обусловленного введением в состав предложенной шихты шунгита.

Шунгит - достаточно распространенный природный минерал, состоящий на 70% из соединения оксида алюминия и кварца. Основным структурным элементом шунгитов являются глобулы, представляющие собой сферические или эллипсоидальные углеродные образования размером в среднем 10 нм, внутри которых установлено наличие пустот. Кроме внутренних пустот установлено также наличие межглобулярных пустот (пор). Объем закрытых пор оценивается в 95% от общего рассеивающего объема пор. При механическом воздействии в процессе помола за счет частичного разрушения глобулярной структуры и открытия ранее закрытых пор наблюдается не только увеличение удельной адсорбционной поверхности, но и структурности, о чем свидетельствует опережающий рост показателя абсорбции ДБФ. Уровень различия между этими показателями менее 10 ед. характеризует исходную шунгитовую породу, как высокопористую, но которой присущи поры меньшего размера.

Известно, что шунгитовые сорбционные материалы для очистки нефтесодержащих стоков (шунгиты из Карельского месторождения, Россия), испытанные в промышленных условиях в 1,5-2 раза дешевле углей; обладают высокой эффективностью, выступая в роли фильтрующего элемента, сорбента, катализатора окислительно-восстановительных процессов и биологического обеззараживания.

Преимущество применения природного шунгита в пористых проницаемых каталитических материалах состоит в том, что минуя целый ряд процессов обогащения, металлургии, очистки можно обеспечить присутствие в шихте дополнительно меди, никеля, оксида кремния, алюминия, железа, кальция, калия, магния, титана, что обеспечивает комплексные оксидные соединения, определяющие каталитические свойства материалов.

Исходя из условий существования устойчивого горения систем была определена концентрация каждого из компонентов предложенной шихты для получения пористого проницаемого каталитического материала.

Железо как легирующий элемент обеспечивает твердорастворное упрочнение матрицы. Железная окалина легированной стали является отходом горячей обработки металлов (ковки, штамповки) и представляет собой нестехиометрический оксид железа со следами легирующих элементов. При проведении исследований использовалась окалина сталей 18ХНВА, 18ХНМА, 40ХНМА, имеющих высокую реакционную способность. Содержание в шихте железной окалины в количестве 20,02-24,8 мас. % является оптимальным, так как при содержании в составе шихты железной окалины в количестве менее 20,02 мас. % в системе появляется жидкая фаза, а при содержании в составе шихты железной окалины в количестве более 24,8 мас. % шихта сгорает не полностью.

В гетерогенных реакциях окисления и восстановления в порах материалов, получаемых методом СВС, оксид хрома(III) как оксид переходного металла выступает в роли катализатора, в присутствии которого происходит снижение энергии активации. Содержание оксида хрома(III) в количестве 10,5-11,5 мас. % является оптимальным, так как именно такое количество данного компонента позволяет обеспечить требуемое качество очистки отработавших газов. Содержание оксида хрома(III) в шихте в количестве менее 10,5 мас. % и более 11,5 мас. % приводит к образованию в пористых проницаемых каталитических материалах, полученных методом СВС, раковин и свищей.

Хром является катализатором в процессах окисления углеводородов и от его содержания в шихте во многом зависят каталитические свойства пористых проницаемых материалов, полученных методом СВС. Хром введен в шихту, с одной стороны, для стабилизации растекания расплава реактивов в процессе взаимодействия, с другой - для повышения коррозионной стойкости материала к парам серной и азотной кислот, присутствующих в отработавших газах двигателей внутреннего сгорания, и также как катализатор, способствующий снижению энергии активации в окислительных и восстановительных процессах очистки газов в нейтрализаторах. Содержание хрома в количестве 6,75-6,85 мас. % является оптимальным, так как такое количество данного компонента обеспечивает необходимую степень очистки отработавших газов двигателей внутреннего сгорания от вредных веществ. При содержании в шихте хрома в количестве менее 6,75 мас. % происходит снижение механической прочности за счет ухудшения условий растекания расплавов реагентов в процессе изготовления пористых проницаемых материалов, полученных методом СВС, а содержание в шихте хрома в количестве более 6,85 мас. % приводит к образованию раковин и свищей.

Никель является катализатором в процессах доокисления продуктов неполного сгорания и восстановления оксидов азота. Введение никеля в состав шихты для получения пористого проницаемого каталитического материала значительно влияет на состав отработавших газов двигателей внутреннего сгорания. Содержание никеля в шихте в количестве 5,5-5,9 мас. % является оптимальным, так как содержание этого компонента в шихте в количестве менее 5,5 мас. % не обеспечивает необходимое качество очистки выхлопных газов двигателей внутреннего сгорания, а содержание никеля в шихте в количестве более 5,9 мас. % существенно не сказывается на качестве очистки выхлопных газов, но приводит к значительному удорожанию катализатора.

Содержание в шихте алюминия в количестве 12,4-12,6 мас. % является оптимальным, так как при содержании в составе шихты алюминия в количестве менее 12,4 мас. % в системе появляется жидкая фаза, а при содержании в составе шихты алюминия в количестве более 12,6 мас. % шихта сгорает не полностью.

Выбранное соотношение никеля и алюминия в шихте обусловлено концентрационными пределами взаимодействия в системе никель-алюминий, за рамками которых образования интерметаллического соединения не происходит и реакция самопроизвольно прекращается.

Содержание в шихте шунгита в количестве 30,0-50,0 мас. % является оптимальным, так как именно это количество руды в составе шихты обеспечивает заданную пористость, извилистость пор, механическую прочность, ударную вязкость, а также необходимую степень очистки отработавших газов от вредных веществ. Содержание в составе шихты шунгита в количестве менее 30 мас. % не дает возможности обеспечить требуемую пористость получаемого материала, извилистость пор, что не позволяет эффективно осуществлять процесс каталитической очистки отработавших газов. Содержание шунгита в шихте в количестве более 50 мас. % приводит к снижению механической прочности, ударной вязкости и снижению коррозионной стойкости материала (см. Таблицу).

Содержание в шихте меди в количестве 1,18-2,0 мас. % является оптимальным, так как именно при таком количестве данного компонента в составе шихты обеспечивается каталитическая очистка отработавших газов двигателей внутреннего сгорания, реализуется способность окисления и нейтрализации токсических компонентов отработавших газов и уменьшается дымность двигателей внутреннего сгорания, при этом могут быть использованы более тонкостенные фильтрующие элементы вследствие повышения механической прочности на сжатие до 10 МПа. При содержании в составе шихты меди в количестве менее 1,18 мас. % шихта сгорает не полностью, а при содержании в составе шихты меди в количестве более 2,0 мас. % в системе появляется жидкая фаза.

При проведении исследований по определению влияния содержания шунгита на состав шихты для получения пористого проницаемого каталитического материала изменялось и соотношение основных компонентов - железной окалины, алюминия, хрома и никеля. При этом изменились и физические характеристики получаемого материала. Изменение содержания хрома и никеля по сравнению с содержанием тех же компонентов в шихте, выбранной в качестве прототипа, привело к уменьшению среднего приведенного диаметра пор, увеличению удельной поверхности и пористости (см. Таблицу).

Изобретение поясняется таблицей, в которой приведены состав, физические характеристики, физико-механические и функциональные свойства образцов пористого проницаемого каталитического материала, полученного на основе предложенной шихты с шунгитом и медью путем СВС, а также образцов пористого проницаемого материала, полученного на основе шихты, выбранной в качестве прототипа, путем СВС.

Предлагаемое изобретение иллюстрируется следующим примером.

Для экспериментальной проверки заявляемого технического решения были подготовлены образцы шихты различного состава согласно изобретению, а также образец шихты-прототипа. Для изготовления образцов использовались размол железной окалины стали 18Х2Н4МА, хром ПХ-1 по ТУ 882-76, никель ПНК-ОТ-1 по ГОСТ 9722-79, алюминий АСД-1 по ТУ 485-22-87, шунгит (порошок) по ТУ 5714-007-12862296-2016 и медь. В качестве железной окалины можно использовать также железную окалину стали 18ХНВА, или стали 18ХНМА, или стали 40ХНМА. Компоненты дозировались в заданных соотношениях на аналитических весах с точностью до 0,001 г и смешивались всухую в лабораторном смесителе типа «пьяная бочка» партиями по 200 г в течение 1 часа. Приготовленная шихта засыпалась в металлические формы и после инициирования реакции СВС компонентов получали образцы пористого проницаемого материала, которые в дальнейшем использовались для испытаний.

Образцы для испытаний имели вид полых цилиндров длиной 100 мм, с внешним диаметром 40 мм и внутренним диаметром 30 мм. Средний размер пор образцов определялся металлографически по результатам 250 измерений индивидуальных пор. Общую пористость определяли методом гидростатического взвешивания образцов, коэффициент проницаемости по воздуху по ГОСТ 25283-93. Результаты испытаний приведены в таблице.

Экспериментальная оценка физико-механических, каталитических и эксплуатационных свойств пористых проницаемых каталитических материалов проведена на образцах, полученных при идентичных технологических условиях с различными свойствами шихты. На основании таблицы выявлена зависимость среднего диаметра пор от соотношения компонентов в составе шихты: с увеличением содержания в шихте шунгита пористость материала возрастает. Формирование структуры пористого проницаемого каталитического материала происходит на основе процесса горения смеси, в которую входит d-элементы периодической системы элементов, а именно: железо, хром, никель, медь и ряд других. Как следует из данных таблицы, шихта с заявленным составом компонентов позволяет уменьшить средний размер пор в синтезируемом материале до 51% по сравнению с прототипом.

Таким образом, применение предлагаемой шихты с добавлением природного шунгита по сравнению с использованием шихты-прототипа позволяет получить изделия, изготовленные на основе получаемого пористого проницаемого материала, обеспечивающие качественную каталитическую очистку отработавших газов двигателей внутреннего сгорания, повысить устойчивость к динамическим и статическим нагрузкам, снизить себестоимость и материалоемкость этих изделий, расширить сферу применения полученного пористого проницаемого каталитического материала, что обусловлено повышением механической прочности и уменьшением среднего размера пор синтезируемого материала.

Шихта для получения пористого проницаемого каталитического материала, содержащая железную окалину, оксид хрома, хром, никель, алюминий, отличающаяся тем, что она дополнительно содержит шунгит и медь при следующих соотношениях компонентов, мас.%:

Железная окалина 20,02-24,8
Оксид хрома (III) 10,5-11,5
Хром 6,75-6,85
Никель 5,5-5,9
Алюминий 12,4-12,6
Шунгит 30,0-50,0
Медь 1,18-2,0



 

Похожие патенты:

Устройство относится к теплоэнергетике, в частности, к водородной энергетике, и может быть использовано для получения тепловой энергии из воды в дополнение к тепловой энергии углеводородного топлива. Пароплазменное горелочное устройство с внутрицикловой газификацией топлива содержит огневую камеру, выполненную в виде линейной цепи сопел Лаваля, в которой выход предыдущего сопла соединен со входом последующего сопла цепи так, что геометрические размеры последующего сопла цепи превышают геометрические размеры предыдущего.

Изобретение относится к области нефтепереработки. Предложено устройство для уменьшения загрязнения окружающей среды исходным сырьем тяжелого судового жидкого топлива, включающее первый резервуар, второй резервуар, гидравлически сообщающийся с первым резервуаром, и третий резервуар, гидравлически сообщающийся со вторым резервуаром и обеспечивающий возможность обработки жидких компонентов, поступивших в него из второго сосуда, отделение любых остаточных газообразных компонентов и любых побочных углеводородных компонентов от конечного продукта тяжелого судового жидкого топлива и выгрузки тяжелого судового жидкого топлива, и линию разгрузки из третьего резервуара для выгрузки продукта ТСЖТ.

Изобретение относится к области отопления, в частности к нагревателям текучей среды, в которых сжигание происходит в импульсном режиме вследствие акустического резонанса в газовой массе, и может быть использовано для нагрева теплоносителей различными горючими газами, например, в нефтеперерабатывающей отрасли.

Изобретение относится к области энергетики и может быть использовано в системах отопления, в частности в водонагревателях или бойлерах; в системах утилизации, работающих на сжигании попутного газа. Устройство пульсирующего горения содержит камеру сгорания, соединенный с ней узел подачи воздуха и горючего газа и соединенный с ней дымовой канал, включающий по меньшей мере одну соединенную с камерой сгорания резонансную трубу и последовательно расположенные после по меньшей мере одной резонансной трубы по меньшей мере два резонатора Гельмгольца, каждый из которых образован дымовой камерой и расположенной после нее дымовой трубой, при этом собственная резонансная частота каждого из резонаторов Гельмгольца ниже частоты пульсаций горения.

Изобретение относится к области энергетики и может применяться в аппаратах для плавления базальта с реализацией погружного горения. Способ погружного сжигания топлива и окислителя в плавильных печах барботажного типа заключается в раздельной подаче природного газа и окислителя в горелке, нагреве природного газа от стенок отверстия до температуры разложения на водород и углерод, горении выходящих компонентов, образовании в процессе горения тепла, причем компоненты горения нагревают с помощью футеровки пода печи, тем самым образованное тепло возвращают в плавильную печь через перфорацию пода печи, при этом выходящие компоненты начинают гореть непосредственно на выходе из горелки и продолжают гореть в расплаве, при этом на выходе из горелки получают высокоэффективное топливо в виде сажеводородной смеси.

Изобретение относится к теплотехнике и может быть использовано в водогрейных котлах. Устройство содержит горелку 1 с радиально встроенными патрубками 2, расположенными по окружности горелки.

Изобретение относится к энергетике. Теплогенератор пульсирующего горения (ТПГ) содержит клапанно-смесительное устройство на входе в камеру сгорания, выход из которой через трубы-резонаторы и дымовую трубу сообщен с атмосферой.

Изобретение относится к теплогенерирующим установкам, работающим на природном газе, и служит для утилизации вредных газообразных выбросов. В тепловодородном генераторе продуктовые трубопроводы соединены через теплообменник с узлом выделения водорода, состоящим из нескольких адсорберов.

Изобретение относится к области информационных технологий, предназначенных для специализированной обработки данных, в частности к способу вычислительного моделирования процессов газодинамики горения, протекающих в некой материальной среде, допускающей химические трансформации. Способ вычислительного моделирования процессов газодинамики горения, протекающих в материальной среде, допускающей химические трансформации, включает последовательно осуществляемые следующие действия: определяют в исходной указанной материальной среде, допускающей химические трансформации, исходные данные, описывающие взаимосвязанные физико-химические и динамические процессы, осуществляют декомпозицию указанной материальной среды на геометрические области, каждая из которых соответствует своему набору исходных данных указанных физико-химических и динамических процессов, осуществляют для каждой указанной геометрической области декомпозицию указанных физико-химических и динамических процессов на газодинамические, термодиффузионные и химические процессы, осуществляют последующую обработку меняющихся во времени указанных данных в каждой геометрической области с помощью гибридной кластерной системы параллельных вычислений, каждый узел которой включает совокупность вычислительных устройств, таких как: по меньшей мере один процессор общего назначения и по меньшей мере один сопроцессор.

Изобретение относится к устройствам и способам утилизации влажных иловых осадков коммунальных очистных сооружений с целью нейтрализации сточных вод (канализации). В частности, изобретение относится к каталитическому реактору для утилизации иловых осадков сточных вод с вертикальным корпусом, с патрубком для подачи катализатора в верхней части корпуса, с последовательно расположенными в нижней части корпуса патрубками ввода илового осадка, шнековой подачи угля и патрубком удаления катализатора, над которыми внутри корпуса, в его средней части, расположена организующая насадка, а в основании корпуса реактора расположен разгрузочный шнек для выгрузки несгораемых компонентов иловых осадков сточных вод, причем отбойник, расположенный в верхней части корпуса реактора под крышкой с трубой вывода дымовых газов, выполнен в форме полого усечённого конуса, при этом усечённый конус отбойника закреплён на корпусе реактора вниз основанием с меньшим диаметром, в котором закреплён пирамидальный четырёхгранный наконечник вершиной вниз с диагональю основания, большей, чем диаметр меньшего основания усечённого конуса отбойника, таким образом, что между плоскостью основания наконечника и плоскостью меньшего основания усечённого конуса отбойника образованы зазоры; в нижней части корпуса реактора между патрубком удаления катализатора и зоной выгрузки несгоревших компонентов осадка с патрубком для разгрузочного шнека расположено воздухораспределительное устройство, которое состоит из двух внешних распределительных коллекторов, расположенных в одной плоскости и параллельно друг другу у диаметрально противоположных стенок корпуса реактора, с отходящими от каждого коллектора через колена по три трубы круглого сечения с перфорационными отверстиями в нижней части стенки.

Изобретение относится к технологии радиопоглощающих ферритов. Может использоваться при производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры.
Наверх