Смеси азоторганических соединений, содержащих ароматические c5-c6-циклы, как жидкий органический носитель водорода и водородный цикл на его основе

Изобретение относится к жидкому органическому носителю водорода, представляющему собой смесь азоторганических соединений, содержащих ароматические С56-циклы, способных в присутствии катализаторов присоединять атомы водорода, имеющую более низкие тепловые эффекты реакций гидрирования-дегидрирования компонентов, причем смеси содержат по крайней мере одно соединение, выбранное из ряда: индол, карбазол, и по крайней мере одно соединение, выбранное из ряда: акридин, пиридин, фенантридин, хинолин, причем для бинарной системы соотношения компонентов выбраны из ряда 25:75% масс., 50:50% масс., 75:25% масс., а для системы из трех компонентов первый компонент взят в количестве не более 30% масс., второй компонент взят в количестве не более 30% масс., третий компонент - остальное до 100% масс. Также изобретение относится к водородному циклу, реализуемому при связывании водорода при температурах от 110 до 160°С и освобождении водорода при температурах от 320 до 350°С, включающему связывание водорода и его высвобождение из жидкого органического носителя водорода, в присутствии гетерогенного катализатора, причем гетерогенный катализатор включает носитель - Al2O3 и нанесенную на него Pt, содержание платины Pt находится в пределах 0,1 до 2,0% масс., и/или Pd, содержание палладия Pd находится в пределах 0,1 до 2,0% масс., или Ni, содержание никеля Ni находится в пределах 6 до 12% масс. 2 н.п. ф-лы, 37 пр., 1 табл.

 

Изобретение относится к области водородной энергетики, металлорганической химии и катализа, в частности к разработке химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования, для автономных энергетических систем, включая наземные и водные средства транспорта, стационарных объектов наземного базирования, других устройств, оснащенных водородными двигателями, а также при создании жидких органических носителей водорода (ЖОНВ).

Существуют различные подходы к хранению водорода, например, в компримированном состоянии при высоком давлении, в жидком виде, физически адсорбированном пористыми материалами состоянии, в форме гидридов металлов и химических гидридов. Использование сжатого водорода вызывает опасения по поводу безопасности и стоимости. Криогенный водород имеет высокую плотность и приемлем при хранении в больших хранилищах. Однако для использования энергии транспортом существенны затраты на сжижение, есть проблемы с последующим испарением. Гидриды металлов имеют недостатки в области термодинамики реакции, малую скорость реакции или низкую емкость по водороду.

Жидкие органические носители водорода являются одними из перспективных аккумуляторов этого энергоносителя, способны накапливать 5-8 мас. % водорода, участвуют в обратимых реакциях гидрирования-дегидрирования при умеренных температурах, используемые гетерогенные катализаторы хорошо изучены, относительно недороги и имеют длительный рабочий цикл.

Предметом настоящего изобретения является способ применения смесей, содержащих, по крайней мере, одно соединение, выбранное из ряда: индол, карбазол и, по крайней мере, одно соединение, выбранное из ряда: акридин, пиридин, фенантридин, хинолин в качестве жидкого органического носителя водорода. Перечисленные соединения являются крупнотоннажными и доступными продуктами, получаемыми в процессе коксохимической переработки углей.

Предложен состав жидкой при комнатной температуре смеси, содержащей два или более соединений, выбранных из изомеров бензилтолуола и/или дибензилтолуола в каталитических процессах для связывания водорода и/или его выделения [US 20150266731 A1, "Liquid compounds and method for the use thereof as hydrogen stores", A. Boesmann, P. Wasserscheid, N. Brueckner, J. Dungs. Pub. No.: US 2015/0266731 A1, Pub. Data: Sep 24, 2015]. Недостатком данного жидкого носителя водорода является его невысокая емкость по водороду на единицу массы, т.к. используемые ароматические соединения представляют собой моноциклы, соединенные алкильными цепочками, которые имеют относительно низкую плотность и высокие тепловые эффекты процессов «гидрирования-дегидрирования», что обуславливает необходимость использования разбавленных водородонасыщенной формой соединения потоков сырья для снижения тепловых эффектов в реакторе. Практически это означает потери энергии на перекачку дополнительного объема ЖОНВ, затраты на дополнительный объем реактора для обеспечения необходимой объемной скорости подачи сырья. Как следствие, снижается энергетическая эффективность реализуемого водородного цикла.

Наиболее близким к предлагаемому решению является ЖОНВ, который представляет собой дибензилтолуол – пергидродибензилтолуол [М. Nierman, A. Beckendorff, М. Kaltschmitt, K. Bonhoff. Liquid Organic Hydrogen Carrier (LOHC) - Assessment based on chemical and economic properties // International Journal of Hydrogen Energy.44 (2019). 6631-6654]. В данном случае, как и в случае предлагаемой смеси, гидрируются ароматические фрагменты, входящие в структуру соединений.

Недостатком предлагаемой смеси является высокое давление насыщенных паров, что увеличивает потери носителя водорода в процессе эксплуатации и высокие значения тепловых эффектов гидрирования и дегидрирования, что приводит к росту затрат на разбавление и циркуляцию ненасыщенной формы ЖОНВ насыщенной с целью снижения температурных градиентов в реакторе.

Техническим результатом настоящего изобретения является использование смеси азоторганических соединений, содержащих ароматическиеС56-циклы, в качестве жидкого органического носителя водорода, обеспечивающего более высокую энергетическую эффективность реализуемого водородного цикла.

Технический результат достигается тем, что жидкий органический носитель водорода представляет собой смесь азоторганических соединений, содержащих ароматические С56-циклы, способных в присутствии катализаторов присоединять атомы водорода, и имеющую более низкие тепловые эффекты реакций гидрирования-дегидрирования компонентов, причем смеси содержат, по крайней мере, одно соединение, выбранное из ряда: индол, карбазол и, по крайней мере, одно соединение, выбранное из ряда: акридин, пиридин, фенантридин, хинолин. Жидкий органический носитель водорода представляет собой смесь двух или более компонентов, причем для бинарной системы соотношения компонентов выбраны из ряда 25:75% масс., 50:50% масс., 75:25% масс., а для системы из трех компонентов первый компонент взят в количестве не более 30% масс., второй компонент взят в количестве не более 30% масс, третий компонент-остальное до 100% масс. Водородный цикл, реализуется при связывании водорода при температурах от 110 до 160°С и освобождении водорода при температурах от 320 до 350°С, включает связывание водорода и его высвобождение из жидкого органического носителя водорода, в присутствии гетерогенного катализатора, причем гетерогенный катализатор включает носитель - Al2O3, и нанесенную на него Pt, содержание платины Pt находится в пределах 0,1 до 2,0% масс, и/или Pd, содержание палладия Pd находится в пределах 0,1 до 2,0% масс., или Ni, содержание никеля Ni находится в пределах 6 до 12% масс.

Поставленная задача решается тем, что жидкий органический носитель водорода представляет собой смесь азоторганических соединений, содержащих ароматические С56-циклы; водородный цикл, включающий связывание водорода и его высвобождение из жидкого органического носителя водорода, в присутствии гетерогенного катализатора, причем гетерогенный катализатор включает носитель - Al2O3 и нанесенный на него активный металл, выбранный из ряда Pt, Pd, их смеси, или Ni.

Предлагаемые результаты можно реализовать при проведении реакции в проточном реакторе. Можно рассчитать поглощение водорода исходя из содержания ароматических углеводородов в исходном сырье и в продукте гидрирования, однако в данном случае на входе в реактор и выходе из сепаратора стоят детекторы mass-flow, которые позволяют по разнице непосредственно определить выделение или поглощение водорода.

Гетерогенный катализатор включает носитель -Al2O3 и нанесенный на него активный металл, выбранный из ряда Pt и/или Pd в количестве от 0,1 до 2,0% масс, или Ni в количестве 6-12% масс.

Эксперименты по гидрированию-дегидрированию смеси проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 110-160°С и ОСПС=4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 320-350°С.

Катализаторы, содержащие платину и/или палладий, готовили адсорбционной пропиткой носителя из водных растворов в присутствии конкурента (уксусной кислоты) в количестве 0,4-0,6 мл ледяной СН3СООН на 10 мл пропиточного раствора. Объем пропиточного раствора был постоянным и составлял 10 мл. Носитель, предварительно прокаленный γ-Al2O3, в количестве 5 г, заливался пропиточным раствором на 24 часа. После стадии сорбции пропиточный раствор сливался с готового катализатора. Никель наносили на поверхность носителя из водного раствора гексагидрата нитрата никеля по влагоемкости. Катализаторы сушили при 80, 100 и 110°С. Активация (восстановление) катализатора по описанной выше программе проводилась непосредственно в реакторе.

Состав катализаторов и результаты гидрирования-дегидрирования в объемах поглощенного и выделенного водорода, а так же тепловой эффект реакции для исследованных систем приведены в таблице 1.

ПРИМЕРЫ

Пример 1.

Смесь индол/акридин (25:75 по массе) в присутствии катализатора 12,0% масс. Ni/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,49 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,35 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -62,5 кДж/моль Н2.

Пример 2.

Смесь индол/акридин (50:50 по массе) в присутствии катализатора 0,1/2,0% масс. Pt-Pd/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,38 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,12 г Н2 на 100 г, ЖОНВ. Тепловой эффект реакции составил -60,0 кДж/моль Н2.

Пример 3.

Смесь индол/акридин (75:25 по массе) в присутствии катализатора 0,1% масс. Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,32 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 6,91 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -57,3 кДж/моль Н2.

Пример 4.

Смесь индол/пиридин (25:75 по массе) в присутствии катализатора 6,0% масс. Ni/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,42 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,32 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -63,0 кДж/моль Н2.

Пример 5.

Смесь индол/пиридин (50:50 по массе) в присутствии катализатора 0,6% масс. Pt/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,34 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,00 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -60,3 кДж/моль Н2.

Пример 6.

Смесь индол/пиридин (75:25 по массе) в присутствии катализатора 0,4% масс. Pd/Al2O3 гидрировали при температуре 110°С. По результатам проведенного процесса было поглощено 2,30 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 6,90 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -57,4 кДж/моль Н2.

Пример 7.

Смесь индол/фенантридин (25:75 по массе) в присутствии катализатора 8,0% масс. Ni/Al2O3 гидрировали при температуре 130°С. По результатам проведенного процесса было поглощено 2,46 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,38 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -58,9 кДж/моль Н2.

Пример 8.

Смесь индол/фенантридин (50:50 по массе) в присутствии катализатора 1,2% масс. Pt/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,41 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,23 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -57,5 кДж/моль Н2.

Пример 9.

Смесь индол/фенантридин (75:25 по массе) в присутствии катализатора 1,4% масс. Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,29 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 6,93 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -56,0 кДж/моль Н2.

Пример 10.

Смесь индол/хинолин (25:75 по массе) в присутствии катализатора 10,0% масс. Ni/Al2O3 гидрировали при температуре 110°С. По результатам проведенного процесса было поглощено 2,46 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,30 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -60,2 кДж/моль Н2.

Пример 11.

Смесь индол/хинолин (50:50 по массе) в присутствии катализатора 2,0% масс. Pt/Al2O3 гидрировали при температуре 120°С. По результатам проведенного процесса было поглощено 2,37 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,12 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -58,4 кДж/моль Н2.

Пример 12.

Смесь индол/хинолин (75:25 по массе) в присутствии катализатора 2,0/0,1% масс. Pt-Pd/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,32 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 6,98 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -56,5 кДж/моль Н2.

Пример 13.

Смесь индол/карбазол/пиридин (25:25:50 по массе) в присутствии катализатора 12,0% масс. Ni/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,38 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,08 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -59,4 кДж/моль Н2.

Пример 14.

Смесь индол/карбазол/фенантридин (25:25:50 по массе) в присутствии катализатора 0,1% масс. Pt/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,44 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,28 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -56,6 кДж/моль Н2.

Пример 15.

Смесь индол/карбазол/хинолин (25:25:50 по массе) в присутствии катализатора 0,1% масс. Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,40 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,19 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -57,5 кДж/моль Н2.

Пример 16.

Смесь индол/акридин/пиридин (25:25:50 по массе) в присутствии катализатора 1,2% масс. Pt/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,44 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,36 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -62,9 кДж/моль Н2.

Пример 17.

Смесь индол/акридин/фенантридин (25:25:50 по массе) в присутствии катализатора 1,4% масс. Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,47 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,41 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -60,1 кДж/моль Н2.

Пример 18.

Смесь индол/акридин/хинолин (25:25:50 по массе) в присутствии катализатора 10,0% масс. Ni/Al2O3 гидрировали при температуре 110°С. По результатам проведенного процесса было поглощено 2,44 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,31 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -61,0 кДж/моль Н2.

Пример 19.

Смесь индол/пиридин/фенантридин (25:25:50 по массе) в присутствии катализатора 2,0/2,0% масс. Pt-Pd/Al2O3 гидрировали при температуре 120°С. По результатам проведенного процесса было поглощено 2,47 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,32 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -60,2 кДж/моль Н2.

Пример 20.

Смесь индол/пиридин/хинолин (25:25:50 по массе) в присутствии катализатора 2,0% масс. Pd/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,43 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,38 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -61,1 кДж/моль Н2.

Пример 21.

Смесь индол/фенантридин/хинолин (25:25:50 по массе) в присутствии катализатора 12,0% масс. Ni/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,48 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,44 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -59,8 кДж/моль Н2.

Пример 22.

Смесь карбазол/акридин (25:75 по массе) в присутствии катализатора 0,1% масс. Pt/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,48 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,46 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -61,6 кДж/моль Н2.

Пример 23.

Смесь карбазол/акридин (50:50 по массе) в присутствии катализатора 0,1% масс. Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,46 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,37 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -58,2 кДж/моль Н2.

Пример 24.

Смесь карбазол/акридин (75:25 по массе) в присутствии катализатора 6,0% масс. Ni/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,38 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,20 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -54,7 кДж/моль Н2.

Пример 25.

Смесь карбазол/пиридин (25:75 по массе) в присутствии катализатора 0,6% масс. Pt/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,46 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,28 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -62,1 кДж/моль Н2.

Пример 26.

Смесь карбазол/пиридин (50:50 по массе) в присутствии катализатора 0,4% масс. Pd/Al2O3 гидрировали при температуре 110°С. По результатам проведенного процесса было поглощено 2,43 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,20 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -58,5 кДж/моль Н2.

Пример 27.

Смесь карбазол/пиридин (75:25 по массе) в присутствии катализатора 8,0% масс. Ni/Al2O3 гидрировали при температуре 130°С. По результатам проведенного процесса было поглощено 2,37 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,19 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -54,8 кДж/моль Н2.

Пример 28.

Смесь карбазол/фенантридин (25:75 по массе) в присутствии катализатора 1,2/1,2% масс. Pt-Pd/Аl2О3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,51 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,56 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -58,0 кДж/моль Н2.

Пример 29.

Смесь карбазол/фенантридин (50:50 по массе) в присутствии катализатора 1,4% масс. Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,45 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,31 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -55,8 кДж/моль Н2.

Пример 30.

Смесь карбазол/фенантридин (75:25 по массе) в присутствии катализатора 10,0% масс. Ni/Al2O3 гидрировали при температуре 110°С. По результатам проведенного процесса было поглощено 2,38 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,21 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -53,4 кДж/моль Н2.

Пример 31.

Смесь карбазол/хинолин (25:75по массе) в присутствии катализатора 2,0% масс. Pt/Al2O3 гидрировали при температуре 120°С. По результатам проведенного процесса было поглощено 2,50 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,46 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -59,3 кДж/моль Н2.

Пример 32.

Смесь карбазол/хинолин (50:50 по массе) в присутствии катализатора 2,0% масс. Pd/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,43 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,26 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -56,7 кДж/моль Н2.

Пример 33.

Смесь карбазол/хинолин (75:25 по массе) в присутствии катализатора 12,0% масс. Ni/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,41 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,14 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -53,9 кДж/моль Н2.

Пример 34.

Смесь карбазол/акридин/пиридин (25:25:50 по массе) в присутствии катализатора 0,4/1,6% масс. Pt-Pd/Al2O3 гидрировали при температуре 110°С. По результатам проведенного процесса было поглощено 2,44 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 7,44 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -61,9 кДж/моль Н2.

Пример 35.

Смесь карбазол/акридин/фенантридин (25:25:50 по массе) в присутствии катализатора 8,0% масс. Ni/Al2O3 гидрировали при температуре 130°С. По результатам проведенного процесса было поглощено 2,51 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 7,56 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -59,2 кДж/моль Н2.

Пример 36.

Смесь карбазол/акридин/хинолин (25:25:50 по массе) в присутствии катализатора 1,2% масс. Pt/Al2O3 гидрировали при температуре 150°С. По результатам проведенного процесса было поглощено 2,48 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 7,43 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -60,1 кДж/моль Н2.

Пример 37.

Смесь карбазол/фенантридин/хинолин (25:25:50 по массе) в присутствии катализатора 1,4% масс. Pd/Al2O3 гидрировали при температуре 160°С. По результатам проведенного процесса было поглощено 2,51 г Н2 на 100 г ЖОНВ. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 7,49 г Н2 на 100 г ЖОНВ. Тепловой эффект реакции составил -58,9 кДж/моль Н2.

1. Жидкий органический носитель водорода, представляющий собой смесь азоторганических соединений, содержащих ароматические С56-циклы, способных в присутствии катализаторов присоединять атомы водорода, имеющую более низкие тепловые эффекты реакций гидрирования-дегидрирования компонентов, причем смеси содержат по крайней мере одно соединение, выбранное из ряда: индол, карбазол, и по крайней мере одно соединение, выбранное из ряда: акридин, пиридин, фенантридин, хинолин, причем для бинарной системы соотношения компонентов выбраны из ряда 25:75% масс., 50:50% масс., 75:25% масс., а для системы из трех компонентов первый компонент взят в количестве не более 30% масс., второй компонент взят в количестве не более 30% масс., третий компонент - остальное до 100% масс.

2. Водородный цикл, реализуемый при связывании водорода при температурах от 110 до 160°С и освобождении водорода при температурах от 320 до 350°С, включающий связывание водорода и его высвобождение из жидкого органического носителя водорода по п. 1, в присутствии гетерогенного катализатора, причем гетерогенный катализатор включает носитель - Al2O3 и нанесенную на него Pt, содержание платины Pt находится в пределах 0,1 до 2,0% масс., и/или Pd, содержание палладия Pd находится в пределах 0,1 до 2,0% масс., или Ni, содержание никеля Ni находится в пределах 6 до 12% масс.



 

Похожие патенты:

Группа изобретений относится к устройствам обработки информации, управляющим устройствам, транспортным средствам и способам распыления воды. Техническим результатом является улучшение окружающей среды за счет слива воды из транспортного средства.

Изобретение относится к области электротехники, а именно к водородонакопительному компоненту энергоблока, который обеспечивает безопасное и надежное хранение водорода, используемого для выработки электричества, и может быть использовано для снабжения электроэнергией удаленных объектов. Повышение безопасности хранения водорода и, соответственно, работы энергоблока является техническим результатом изобретения.

Изобретение относится к области электротехники, а именно, к высокотемпературным твердооксидным топливным элементам (ТОТЭ) трубчатой конструкции с анодным несущим электродом, в частности к микротрубчатым ТОТЭ, и предназначено для создания единичных трубчатых ТОТЭ с эффективным катодным токовым коллектором для последующей коммутации топливных элементов в батарее.

Изобретение относится к анодам твердооксидных топливных элементов, к композициям, используемым при изготовлении анодов, к способам изготовления анодов. Анод для твердооксидного топливного элемента содержит: матрицу, содержащую легированный оксид металла; и электрокатализатор, причем электрокатализатор содержит пористые частицы, поддерживаемые матрицей, причем пористые частицы содержат каталитический материал парового риформинга, заключенный внутри пор пористых частиц.

Изобретение относится к области электротехники, а именно к системам хранения и подачи реагентов (СКХР) в виде жидкого водорода и кислорода на подводных аппаратах (ПА) и подводных лодках (ПЛ) с энергетическими установками (ЭУ) на базе электрохимических генераторов (ЭХГ) с водородно-кислородными элементами.

Изобретение относится к области электротехники и может быть использовано для стабилизации давления водорода в портативных источниках питания, включающих химический источник водорода и электрохимический генератор. В портативном источнике питан к газовой магистрали водорода последовательно с химическим источником водорода подключается буфер-накопитель.

Предложена система обработки воды с использованием устройства для электролиза водного раствора щелочи и щелочного топливного элемента, где (1) устройство для электролиза водного раствора щелочи и щелочной топливный элемент соединены друг с другом, (2) раствор электролита, получаемый смешиванием сырьевой воды и водного раствора щелочи с приведением смеси к концентрации от 5 до 60 мас.%, и количество воды, соответствующее потерям воды в результате электролитической обработки, подают в устройство для электролиза водного раствора щелочи и осуществляют непрерывную электролитическую обработку, при этом концентрацию щелочи поддерживают на уровне исходной концентрации от 5 до 60 мас.%, а раствор электролита рециркулируют для снижения объема сырьевой воды, образования газообразного кислорода в анодном отделении устройства для электролиза водного раствора щелочи и образования газообразного водорода в катодном отделении устройства для электролиза водного раствора щелочи, (3) раствор электролита, приготовленный из водного раствора щелочи, приведенный к концентрации от 5 до 60 мас.%, и газообразный кислород и газообразный водород, образующиеся при посредстве устройства для электролиза водного раствора щелочи, подают в щелочной топливный элемент, по меньшей мере часть газообразного кислорода и газообразного водорода используют для выработки электрической мощности при помощи щелочного топливного элемента, электрическую энергию и воду накапливают, и (4) накопленную электрическую энергию подают в устройство для электролиза водного раствора щелочи для использования в качестве его источника электрической мощности, а часть накопленной воды или всю накопленную воду подают в циркуляционную линию раствора электролита в устройстве для электролиза водного раствора щелочи для продолжения электролитической обработки, в результате чего часть каждого из: электрической энергии, требующейся устройству, предназначенному для электролиза водного раствора щелочи, и щелочному топливному элементу, газообразного водорода и газообразного кислорода, служащих в качестве сырьевых материалов для электрической энергии, и количества воды, соответствующего потерям воды в результате электролитической обработки, эффективно используются, будучи при этом циркулирующими в системе обработки воды.

Изобретение относится к области электротехники и может быть использовано при производстве ванадиевых электролитов для ванадиевых проточных окислительно-восстановительных редокс батарей (ВРБ). Техническим результатом изобретения является улучшение проводимости ванадиевого электролита на 20% по сравнению с другими электролитами и расширение температурного предела работоспособности ВРБ до -40°С.

Изобретение относится к системам криогенного хранения и подачи реагентов (СКХР), а именно к системам криогенного хранения и подачи жидкого водорода и жидкого кислорода на подводных лодках и подводных аппаратах (ПА) с энергетическими установками на базе электрохимических генераторов. Предложенное техническое решение для СКХР в энергетическом модуле ПА позволяет получить СКХР с минимальными габаритами и массой конструкции, а выполнение кислородной емкости в виде полого сосуда кольцевой формы, внутрь которого устанавливается водородная емкость, обеспечивает минимальные теплопритоки извне, что значительно увеличивает время хранения криогенного водорода без энергозатрат на его охлаждение или незначительное испарение без повышения давления внутри емкости за счет минимального его потребления в режимах движения ПА.

Изобретение относится к области водородной энергетики и предназначено для использования в источниках энергии на водородных топливных элементах. Способ включает использование гидрида магния в качестве металлогидридного топлива, просеивание и измельчение металлогидридного топлива, уплотнение засыпки металлогидридного топлива в химическом картридже, прогрев засыпки металлогидридного топлива и проведение реакции металлогидридного топлива с водяным паром.

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания (ДВС). Предложенная система для смешивания газового топлива для двигателей внутреннего сгорания комбинирует два или более потока газа для получения смешанного газового топлива, обладающего подходящей теплотворной способностью (ТС) для определенного двигателя.
Наверх