Устройство для измерения уровня диэлектрической жидкости в резервуаре

Изобретение может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в резервуаре. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим результатом является повышение точности измерений. В устройстве для измерения уровня, содержащем два располагаемых вертикально отрезка коаксиальной длинной линии, нижние концы которых совмещены с дном резервуара, подключенных к входу соответствующего электронного блока, выходы электронных блоков подсоединены к соответствующим входам функционального преобразователя, выход которого соединен с регистратором, отрезки коаксиальной длинной линии выполнены в виде соосно расположенных внутреннего и двух полых цилиндрических проводников, при этом один отрезок коаксиальной длинной линии образован внутренним проводником и внутренней поверхностью среднего цилиндрического проводника, а другой - наружной поверхностью среднего цилиндрического проводника и внешним цилиндрическим проводником, отрезки коаксиальной длинной линии содержат на их нижних концах соответствующие оконечные горизонтальные участки одинаковой длины, скачкообразно заполняемые жидкостью и опорожняемые при, соответственно, поступлении жидкости в резервуар и ее удалении из резервуара. 3 ил.

 

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в каком-либо резервуаре. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др.

Известны устройства для измерения уровня жидкостей в резервуарах, основанные на применении отрезков длинных линий (коаксиальной линии, двухпроводной линии и др.) в качестве чувствительных элементов (Викторов В.А. Резонансный метод измерения уровня. М.: Энергия. 1969. 192 с). Такой отрезок длинной линии размещается вертикально в резервуаре с контролируемой жидкостью. Измеряя какой-либо его информативный параметр, в частности, резонансную частоту электромагнитных колебаний, можно определить уровень жидкости. Недостатком таких устройств является невысокая точность измерения, обусловленная зависимостью результатов измерения уровня от электрофизических параметров (диэлектрической проницаемости или (и) тангенса угла диэлектрических потерь) контролируемой жидкости.

Известно также техническое решение (SU 460447 А1, 10.04.1973), которое содержит описание двухканального устройства - уровнемера, в котором в двух независимых отрезках длинных линий с разными нагрузками на их на концах, образующих его измерительные каналы, возбуждают электромагнитные колебания типа ТЕМ на основной (1-ой) гармонике. Их другие концы подсоединены к входам соответствующих вторичных преобразователей, выходы которых соединены с входом блока обработки информации, выход которого подключен к индикатору. Вдоль данных отрезков длинной линии имеет место разное распределение энергии электромагнитного поля стоячей волны, требуемое для получения информации об уровне жидкости независимо от ее электрофизических параметров. Измеряя их резонансные частоты ƒ1 и ƒ2 электромагнитных колебаний (являющиеся функциями уровня z жидкости и его диэлектрической проницаемости ε), можно при совместном функциональном преобразовании ƒ1 и ƒ2 найти уровень z при обеспечении инвариантности результата этого преобразования к величине е и ее возможным изменениям. Недостатком этого устройства является невысокая точность измерения уровня, главным образом, в области малых значений уровня, близких к нулевому значению.

Известно также устройство, в котором применяют два независимых отрезка длинной линии с оконечными горизонтальными участками разной длины, располагаемых вертикально отрезок длинной линии, и заполняемых диэлектрической жидкостью в соответствии с ее уровнем в резервуаре (SU 1765712 А1, 10.10.1980). Измеряя резонансные частоты этих отрезков длинной линии или фазовые сдвиги волн фиксированной частоты после их распространения вдоль этих отрезков длинной линии и производя их совместную функциональную обработку согласно математическим соотношениям, соответствующим применяемому именно в этом устройстве способу измерения, можно определить значения уровня жидкости независимо от диэлектрической проницаемости жидкости. Недостатком этого устройства является невысокая точность измерения, обусловленная расположением двух отрезков длинной линии в разных областях резервуара с контролируемой жидкость. В этих областях электрофизические параметры (диэлектрическая проницаемость, электропроводность) жидкости могут отличаться. Это приводит к снижении точности измерения уровня жидкости, так как величина информативного параметра (резонансной частоты электромагнитных колебаний, фазового сдвига частот зондирующих электромагнитных волн) зависит как от уровня жидкости, так и от ее электрофизических параметров.

Известно также техническое решение (SU 492752 А1, 25.11.1975), содержащее описание устройства, которое по технической сущности является наиболее близким к предлагаемому устройству и принято в качестве прототипа. Это устройство-прототип содержит два располагаемых вертикально в резервуаре с контролируемой жидкостью отрезка коаксиальной длинной линии, подключенных к электронному блоку, отрезки коаксиальной длинной линии выполнены в виде концентрично расположенных внутреннего и двух полых цилиндрических проводников, при этом один отрезок коаксиальной длинной линии образован внутренним проводником и внутренней поверхностью среднего цилиндрического проводника, а другой - наружной поверхностью среднего цилиндрического проводника и внешним цилиндрическим проводником, при этом нижние концы отрезков коаксиальной длинной линии совмещены с дном резервуара.

В этом устройстве информацию об уровне z диэлектрической жидкости независимо от величины ее диэлектрической проницаемости получают согласно способу измерения уровня диэлектрической среды (SU 489960 А1, 30.10.1975), в соответствии с которым осуществляют совместное функциональное преобразование A(z)=A(ƒ1, ƒ2) в электронном блоке устройства измеряемых резонансных частот ƒ1 и ƒ2 обоих отрезков длинной линии (в данном случае - рассматриваемых отрезков коаксиальной длинной линии) согласно соотношению где и - начальные (при z = 0) значения резонансных частот ƒ1 и ƒ2, соответственно. Данное соотношение обладает свойством инвариантности к электрофизическим параметрам жидкости, в частности, к величине диэлектрической проницаемости ε контролируемой диэлектрической жидкости и возможным изменениям ε.

Недостаток этих устройства и способа - невысокая точность измерения уровня, главным образом, в области малых значений уровня, близких к нулевому значению. В этом случае при нулевом значении уровня (z=0) имеется неопределенность типа "0/0", а вблизи значения z=0 погрешность измерения резко возрастает, поскольку результат приведенного выше совместного преобразования A(z) = A(ƒ1, ƒ2) резонансных частот ƒ1 и ƒ2 может принимать разные значения из-за возможных, даже малых, девиаций значений резонансных частот (данное совместное преобразование ƒ1 и ƒ2 неустойчиво относительно возможных флуктуаций значений ).

Техническим результатом изобретения является повышение точности измерений.

Технический результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости в резервуаре, содержащем два располагаемых вертикально в резервуаре с контролируемой жидкостью отрезка коаксиальной длинной линии, нижние концы которых совмещены с дном резервуара, подключенных к входу соответствующего электронного блока, выходы электронных блоков подсоединены к соответствующим входам функционального преобразователя, выход которого соединен с регистратором, отрезки коаксиальной длинной линии выполнены в виде соосно расположенных внутреннего и двух полых цилиндрических проводников, при этом один отрезок коаксиальной длинной линии образован внутренним проводником и внутренней поверхностью среднего цилиндрического проводника, а другой - наружной поверхностью среднего цилиндрического проводника и внешним цилиндрическим проводником, отрезки коаксиальной длинной линии содержат на их нижних концах соответствующие оконечные горизонтальные участки одинаковой длины, скачкообразно заполняемые жидкостью и опорожняемые при, соответственно, поступлении жидкости в резервуар и ее удалении из резервуара.

Предлагаемое устройство поясняется чертежами на фиг. 1, фиг. 2 и фиг. 3.

На фиг. 1 приведена функциональная схема устройства.

На фиг. 2 приведены схематичные изображения измерительных каналов в виде отрезков коаксиальной длинной линии и распределение напряженности электрического поля стоячей волны вдоль каждого из них.

На фиг. 3 приведены графики зависимостей резонансных частот от уровня жидкости для двух измерительных каналов в виде отрезков коаксиальной длинной линии.

Здесь показаны контролируемая жидкость 1, отрезки коаксиальной длинной линии 2 и 3, внутренний проводник 4, средний цилиндрический проводник 5, внешний цилиндрический проводник 6, горизонтальные участки 7 и 8, линии связи 9 и 10, электронные блоки 11 и 12, функциональный преобразователь 13, регистратор 14.

На фиг. 1 схематично изображена функциональная схема устройства. Здесь в резервуаре, содержащем контролируемую диэлектрическую жидкость 1, размещены вертикально два отрезка соосных отрезка коаксиальной длинной линии 2 и 3. Отрезок коаксиальной длинной линии 2 образован совокупностью внутреннего проводника 4 и внутренней поверхностью соосного с ним среднего цилиндрического проводника 5, а другой отрезок коаксиальной длинной линии 3 - совокупностью наружной поверхности среднего цилиндрического проводника 5 и внешнего цилиндрического проводника 6. Отрезки коаксиальной длинной линии 2 и 3 имеют на их соответствующих нижних концах оконечные горизонтальные участки 7 и 8 фиксированной одинаковой длины z0.

С помощью проводников линии связи 9 отрезок коаксиальной длинной линии 3 подсоединен к электронному блоку 11, а с помощью проводников линии связи 10 отрезок коаксиальной длинной линии 2 подсоединен к электронному блоку 12. С помощью электронных блоков 12 и 11 в отрезках коаксиальной длинной линии 2 и 3 производят возбуждение электромагнитных колебаний и измерение резонансных частот ƒ1 и ƒ2, соответственно. Выходы электронных блоков 12 и 11, с которых поступают значения резонансных частот ƒ1 и ƒ2, подключены к входу функционального преобразователя 13. К его выходу подключен регистратор 14, где фиксируется результат совместного преобразования ƒ1 и ƒ2, несущий информацию об уровне диэлектрической жидкости 1 в резервуаре и получаемый в функциональном преобразователе 13.

Устройство работает следующим образом.

Отрезок коаксиальной длинной линии 2 и отрезок коаксиальной длинной линии 3 имеют на их нижних концах оконечные горизонтальные участки 7 и 8, соответственно, фиксированной одинаковой длины z0. Эти оба отрезка длинной линии, размещаемые в емкости с контролируемой жидкостью 1 вертикально, заполняются жидкостью в соответствии с ее уровнем в емкости. При этом горизонтальные участки отрезков длинной линии скачкообразно заполняются жидкостью и опорожняются при, соответственно, поступлении жидкости в резервуар и ее удалении из резервуара.

Оконечными нагрузками данных отрезков коаксиальной длинной линии 2 и 3 могут быть такие реактивные сопротивления, при наличии которых вдоль этих отрезков длинной линии имеет место разное распределение энергии электромагнитного поля стоячих волн. При этом возможно однозначное получение информации об уровне z диэлектрической жидкости независимо от ее диэлектрической проницаемости ε при совместном преобразовании A(z)=A(ƒ1, ƒ2) в функциональном преобразователе 13 резонансных частот ƒ1(z,ε) и ƒ2(z,ε) отрезков коаксиальной длинной линии 2 и 3 согласно соотношению где и - начальные (при z=0) значения резонансных частот ƒ1(z,ε) и ƒ2(z,ε), соответственно.

Отрезок коаксиальной длинной линии 2 и 3 могут иметь реактивные сопротивления их верхних и нижних концах, обеспечивая разное распределение электрического и магнитного полей стоячих волн вдоль них. В частности, как показано на фиг.1, отрезок коаксиальной длинной линии 2 может быть выполнен короткозамкнутым на его верхнем конце и разомкнутым на его нижнем конце, а именно, на конце его горизонтального участка 7; отрезок коаксиальной длинной линии 3 может быть выполнен короткозамкнутым на его нижнем конце, а именно, на конце его горизонтального участка 8, и разомкнутым на его верхнем конце. При этом оба отрезка коаксиальной длинной линии 2 и 3 являются четвертьволновыми резонаторами (длина каждого из этих резонаторов равна четверти длины возбуждаемых в резонаторах электромагнитных колебаний низшего типа ТЕМ). В отрезке коаксиальной длинной линии 2 максимум и минимум напряженности электрического поля (и, соответственно, минимум и максимум магнитного поля) стоячей электромагнитной волны расположены, соответственно, у нижнего конца этого отрезка длинной линии (конца его горизонтального участка 7) и у его верхнего конца. В отрезке коаксиальной длинной линии 3 максимум и минимум напряженности электрического поля (и, соответственно, минимум и максимум магнитного поля) стоячей электромагнитной волны расположены, соответственно, у верхнего конца этого отрезка длинной линии и у его нижнего конца (конца его горизонтального участка 8).

При этом, за счет наличия горизонтальных участков у отрезков коаксиальной длинной линии 2 и 3, при соответствующей, присущей данному устройству, совместной функциональной обработке резонансных частот ƒ1 и ƒ2 двух отрезков длинной линии, устраняется недостаток устройства-прототипа - неопределенность результатов измерения значения уровня z жидкости при его нулевом и близких к нему значениях.

Отрезки коаксиальной длинной линии 2 и 3 являются высокочастотными резонаторами с электромагнитными колебаниями основного типа ТЕМ. Резонансные частоты ƒ1 и ƒ2 соответствующих резонаторов служат информативными параметрами (зависимости ƒ1 и ƒ2 от уровня z жидкости в резервуаре) соответствующего измерительного канала (датчика) рассматриваемого двухканального уровнемера. Обычно ƒ1 и ƒ2 находятся в диапазоне частот ~1÷100 МГц при изменении уровня z жидкости от его нулевого значения до уровня, соответствующего полному заполнению резервуара.

Высокочастотные токи, протекающие по проводникам отрезков длинной линии, занимают, вследствие скин-эффекта, лишь малый поверхностный слой проводника с той его стороны, где есть электромагнитное поле. В диапазоне рабочих частот (~1÷100 МГц) рассматриваемых датчиков уровня (измерительных каналов) толщина скин-слоя весьма мала. Поэтому высокочастотные токи, протекающие по внешней и внутренней поверхностям металлического внутреннего цилиндра 5, разделены и не влияют друг на друга; возбуждаемые высокочастотные электромагнитные колебания и соответствующие им резонансные явления в отрезке коаксиальной длинной линии 2 и отрезке коаксиальной длинной линии 3 являются независимыми.

Возбуждение и съем электромагнитных колебаний в отрезках коаксиальной длинной линии 2 и коаксиальной длинной линии 3, производимые по линиям связи 10 с и 9 с помощью электронных блоков 12 и 11, соответственно, можно осуществлять в их верхних частях так: для отрезка двухпроводной линии 2, имеющего в этом случае максимум напряженности магнитного поля стоячей волны у верхнего конца, можно осуществлять связь по магнитному полю с помощью индуктивных элементов связи (петель); для отрезка коаксиальной длинной линии 3, имеющего в этом случае максимум напряженности электрического поля стоячей волны у его верхнего конца, можно осуществлять с помощью емкостных элементов связи (конденсаторов с емкостью ~1÷10 пФ).

На фиг. 2 приведены схематичные изображения измерительных каналов в виде четвертьволновых отрезков коаксиальной длинной линии 2 и 3. Распределение напряженности электрического поля стоячей волны вдоль каждого из этих отрезков длинной линии показано соответствующими линиями а и b.

Совместное функциональное преобразование измеряемых резонансных частот ƒ1 и ƒ2 отрезков коаксиальной длинной линии 2 и 3, соответственно, в функциональном преобразователе 13 согласно вышеприведенному соотношению A(ƒ1, ƒ2) позволяет с высокой точностью определить уровень z во всем диапазоне его изменения независимо от значения диэлектрической проницаемости ε контролируемой диэлектрической жидкости.

Для отрезков длинной линии, длина вертикальной части каждого из которых имеет длину l и на конце удлинение в виде горизонтального участка фиксированной длины z0, возбуждаемых на, соответственно, резонансных частотах ƒ1 и ƒ2 электромагнитных колебаний, зависимость этих резонансных частот от уровня z можно выразить следующими соотношениями:

где - начальные (при отсутствии в емкости контролируемой жидкости) значения ƒ1 и ƒ2, соответственно;

U1(ξ) и U2(ξ) - напряжение в точке с координатой ξ соответствующего отрезка длинной линии, возбуждаемого на резонансных частотах ƒ1 и ƒ2, соответственно; координата ξ отсчитывается от нижнего конца вертикальной части каждого отрезка длинной линии, т.е. от значения z=0.

Соотношения (2) и (3) позволяют путем их совместного преобразования

определить значение уровня z жидкости в емкости независимо от значения ее диэлектрической проницаемости ε. Это соотношение является инвариантным по отношению к ε. В любой малой окрестности значения z=0 функция A(z) имеет, за счет наличия горизонтальных участков у отрезков коаксиальной длинной линии 2 и 3, конечное значение. Это подтверждает, что данное устройство обеспечивает высокую точность измерения при любых значениях координаты z, включая его малые, вблизи нуля, значения.

Четвертьволновый отрезок коаксиальной длинной линии 2 разомкнут на нижнем конце и короткозамкнут на верхнем конце (в нем электромагнитные колебания возбуждают на резонансной частоте ƒ1). В этом случае распределение напряжения вдоль него на основном (низшем) типе колебаний ТЕМ, возбуждаемом в рассматриваемом отрезке длинной линии, определяется следующим образом:

Четвертьволновый отрезок коаксиальной длинной линии 3 короткозамкнут на нижнем конце и разомкнут на на верхнем конце (в нем электромагнитные колебания возбуждают на резонансной частоте ƒ2). В этом случае распределение напряжения вдоль него на основном (низшем) типе колебаний ТЕМ, возбуждаемом в рассматриваемом отрезке длинной линии, определяется следующим образом:

В результате, подставив эти значения U1(ξ) и U2(ξ) в соотношения (2) и (3), соответственно, будем иметь:

для отрезка коаксиальной длинной линии 2

для отрезка коаксиальной длинной линии 3

На фиг. 3 приведены (качественно) графики зависимостей от z/l значений (линия 1) и (линия 2) для двух измерительных каналов в виде отрезков коаксиальной длинной линии данного устройства. Как видно на фиг. 3, и имеют разные значения при z=0; при z=0 имеет место скачкообразное изменение этих значений вследствие заполнения горизонтальных участков обоих отрезков коаксиальной длинной линии. Практически же при весьма малых значениях z имеет место существенное отличие значений и . В случае устройства-прототипа при z=0 значения является одними и теми же, равными единице, что приводит к неопределенности (значительной погрешности измерения) в определении измеряемого значения z в точке z=0 и ее окрестности.

С учетом соотношений (7) и (8) формула (4) принимает следующий вид:

Это соотношение является инвариантным по отношению к ε. Функция A(z) является монотонной, имея при z=- z0 значение А(- z0)=0, а при z=l значение А(l)=1.

При z=0 из (9) следует, что функция A(z) не принимает значение вида "0/0", а имеет определенное конечное значение

В любой малой окрестности значения z=0 функция A(z) имеет конечное значение (преобразование (9) устойчиво относительно возможных флуктуаций значений и Это подтверждает, что предлагаемое устройство обеспечивает высокую точность измерения при любых значениях уровня жидкости, включая его малые, вблизи нуля, значения.

Таким образом, данное двухканальное устройство позволяет измерять уровень различных диэлектрических жидкостей в резервуарах с высокой точностью, независимо от значений диэлектрической проницаемости жидкостей.

Устройство для измерения уровня диэлектрической жидкости в резервуаре, содержащее два располагаемых вертикально в резервуаре с контролируемой жидкостью отрезка коаксиальной длинной линии, нижние концы которых совмещены с дном резервуара, подключенных к входу соответствующего электронного блока, выходы электронных блоков подсоединены к соответствующим входам функционального преобразователя, выход которого соединен с регистратором, отрезки коаксиальной длинной линии выполнены в виде соосно расположенных внутреннего и двух полых цилиндрических проводников, при этом один отрезок коаксиальной длинной линии образован внутренним проводником и внутренней поверхностью среднего цилиндрического проводника, а другой - наружной поверхностью среднего цилиндрического проводника и внешним цилиндрическим проводником, отличающееся тем, что отрезки коаксиальной длинной линии содержат на их нижних концах соответствующие оконечные горизонтальные участки одинаковой длины, скачкообразно заполняемые жидкостью и опорожняемые при, соответственно, поступлении жидкости в резервуар и ее удалении из резервуара.



 

Похожие патенты:

Изобретение относится к измерительной технике, а именно радарным датчикам. Радарный датчик содержит сенсорный блок, электронный блок оценки, блок связи, блок энергоснабжения.

Изобретение относится к измерительной технике. В способе измерения уровня диэлектрической жидкости в емкости, в первом измерении, в располагаемом вертикально в емкости с жидкостью, первом отрезке длинной линии и заполняемом жидкостью в соответствии с ее уровнем в емкости, возбуждают электромагнитные волны на фиксированной частоте.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в каком-либо резервуаре, независимо от диэлектрической проницаемости жидкости. Техническим результатом является повышение точности измерений.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости, независимо от диэлектрической проницаемости жидкости. Техническим результатом является повышение точности измерений.

Изобретение относится к измерительной технике и может быть использовано для определения положения границы раздела двух диэлектрических сред, находящихся в резервуаре одна над другой и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от значений диэлектрической проницаемости обеих сред.

Группа изобретений касается радиолокационного измерительного устройства для контроля уровня наполнения и/или предельного уровня, способа монтажа радиолокационного измерительного устройства и радиолокационной измерительной системы. Техническим результатом изобретения является обеспечение снижения протяженности измерительного устройства и упрощение его монтажа.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др.

Изобретение применимо в области оборудования для синтеза мочевины. Система измерения уровня жидкости в работающем под давлением сосуде установки синтеза мочевины включает излучатель, удлиненный сплошной стержневой волновод и приемник.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения положения границ раздела между компонентами трехкомпонентной среды, находящейся в какой-либо емкости, одна компонента над другой, и образующих плоские границы раздела, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью.

Изобретение относится к технике измерения уровня потока сточных вод, протекающих по трубопроводам, и может быть использовано для определения уровня жидкости в открытых и закрытых каналах. Техническим результатом является упрощение процедуры измерения высоты потока в трубопроводе с незаполненной жидкостью.
Наверх