Способ получения синтетического алюмосиликатного цеолита



Владельцы патента RU 2780972:

Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук (RU)

Изобретение относится к производству силикатных материалов, в частности синтетического цеолита, и может быть использовано для производства сорбентов и катализаторов. Способ получения синтетического алюмосиликатного цеолита включает гидротермальную обработку исходной смеси, которая содержит источник оксида алюминия, источник оксида натрия, жидкое натриевое стекло, оксид кальция (известь). В качестве источника оксида алюминия и в качестве источника оксида натрия исходная смесь содержит оборотный раствор глиноземного производства. При этом исходная смесь имеет следующее соотношение компонентов, масс.%: оборотный раствор глиноземного производства 94-95,2; жидкое натриевое стекло 1,6-2,2; оксид кальция 3,2-3,8. Технический результат изобретения заключается в разработке способа получения синтетического алюмосиликатного цеолита, позволяющего упростить процесс получения и значительно сократить его длительность. 1 ил., 2 пр.

 

Изобретение относится к производству силикатных материалов, в частности синтетического цеолита, и может быть использовано для производства сорбентов и катализаторов.

Известен способ получения синтетических кристаллических алюмосиликатов (цеолитов) путем смешивания в водно-щелочной среде SiO2 и Al2O3 или их гидратов, или силикатов щелочных металлов и алюминатов щелочных металлов, минерализаторов и при необходимости затравки при следующих мольных отношенияx: SiO2/Al2O3=15-40, ОН-/SiO2=0,1-0,2, Н2О/SiO2=20-60. В качестве исходных материалов для получения цеолитов используют SiO2и Al2O3 или их гидратированные производные, или силикаты и алюминаты щелочных металлов и минеральные кислоты. Предпочтительно использовать более дешевые исходные материалы, такие как жидкое натриевое стекло, соли натрия и алюминия и серную кислоту. После смещения исходных материалов осуществляют гидротермическую кристаллизацию, которую проводят при температуре выше 100°C (предпочтительно 185°С) в течение 1-100 часов (предпочтительно 24 часа) (Патент RU 2066675; МПК B01J 20/18, B01J 29/06, B01J 29/70, C01B 9/00, 01B39/02, C01B 39/36, C01B 39/46; 1996 год).

Однако недостатками известного способа являются его длительность, а также необходимость использования минерализаторов, а в некоторых случаях затравки.

Известен способ получения синтетического цеолита, в котором для получения цеолита используется каолин, белая сажа, древесная мука, раствор натриевой щелочи. В смеситель загружают каолин, добавляют белую сажу и древесную муку. Смесь перемешивают и добавляют раствор гидроксида натрия. Смесь снова перемешивают до образования пластичной массы, массу формуют в гранулы и сушат при температуре 120°С 4 часа, прокаливают при 620°С 2 часа. Аморфные прокаленне гранулы заливают раствором гидроксида натрия с концентрацией 120 г/л. Смесь выдерживают 12 часов при 20°С, затем температуру повышают до 90°С и выдерживают при этой температуре 36 часов. Полученный цеолит отмывают от избыточной щелочи и сушат при 120°С 4 часа. (Патент RU 2218303, МПК C01B 39/14, 2003 год).

Недостатком способа является многостадийность, необходимы предварительные подготовительные процессы и большие временные затраты(более 50 часов), большой расход натрия.

Известен способ получения синтетических цеолитов NaA или NaX, включающий приготовление растворов метасиликата натрия и алюмината натрия, добавление в растворы аминосодержащего соединения из ряда: триэтаноламин, полиэтиленполиамин или м-фенилендиамин, приготовление геля путем
смешивания полученных растворов. Полученный гель смешивают с диметилсульфоксидом и проводят гидротермальную кристаллизацию при температуре 70-100°С в течение 1-2-х недель (Патент RU 2452688; МПК C01B 39/20, C01B 39/16; 2012 год).

Однако недостатками способа являются его длительность и использование большого количества органических соединений, что нежелательно с точки зрения экологии.

Известен способ получения синтетического цеолита с использованием реакционной смеси на основе алюмината натрия, гидроксида натрия, силикагеля, темплата гексаметиленимина и воды с соотношениями компонентов SiO2/Al2O3 от 30 до 50, Na2O/SiO2 от 0,04 до 0,07, гексаметиленимин/SiO2 от 0,4 до 0,5, H2O/SiO2 от 15 до 25, химической активации реакционной смеси при комнатной температуре и перемешивании в течение 12-16 часов, ультразвуковой активации реакционной смеси в ультразвуковой ванне при комнатной температуре и кристаллизации реакционной смеси в гидротермальных условиях при температуре 130-150°С в течение 48-72 ч при перемешивании (Патент RU 2740381; МПК B01J 29/04, C01B 39/20; 2021 год).

Однако недостатками известного способа являются его многостадийность и длительность.

Наиболее близким по технической сущности к предлагаемому способу является способ получения синтетического цеолита с использованием жидкого натриевого стекла, спиртовой фракции, водного нитрата алюминия, "затравки" высококремнеземного цеолита и раствора азотной кислоты. Полученную исходную смесь загружают в автоклавы из нержавеющей стали, нагревают до 175-189°C и выдерживают при этой температуре 2-7 суток, затем охлаждают до комнатной температуры. Синтезированный продукт промывают водой, сушат при 110°С в течение 4-8 часов и прокаливают при 550-600°C 8-12 часов. (Патент RU 2313486, МПК C01B 39/48, 2007 год) (прототип).

Недостатком известного способа является длительный процесс производства (от 2 до 7 суток), использование в процессе органической составляющей, азотной кислоты и нитратов, что увеличивает экологическую нагрузку.

Таким образом, перед авторами стояла задача разработать способ получения синтетического алюмосиликатного цеолита, позволяющий упростить процесс получения и значительно сократить его длительность.

Поставленная задача решена в предлагаемом способе получения синтетического алюмосиликатного цеолита, включающем гидротермальную обработку исходной смеси, содержащей источник оксида алюминия, источник оксида натрия, жидкое натриевое стекло, в котором исходная смесь содержит в качестве источника оксида алюминия и в качестве источника оксида натрия оборотный раствор глиноземного производства и дополнительно оксид кальция (известь) при следующем соотношении компонентов, масс.%: оборотный раствор глиноземного производства 94÷95,2; жидкое натриевое стекло 1,6÷2,2; оксид кальция 3,2÷3,8.

В настоящее время из патентной и научно-технической литературы не известен способ получения синтетического алюмосиликатного цеолита с использованием в качестве компонента исходного сырья оборотного раствора глиноземного производства в заявленных пределах соотношения компонентов.

В ходе исследований, проведенных авторами, было установлено, что ускорение химических реакций между компонентами реакционной смеси, то есть, как следствие, снижение длительности процесса, возможно при использовании соединения, имеющего высокую химическую активность. В качестве такого соединения авторами предлагается оксид кальция (известь), имеющий высокую химическая активность, что обусловливает его практически мгновенное взаимодействие с другими компонентами смеси. При этом использование оборотного раствора, содержащего алюминий и натрий в ионной форме, способствует также ускорению взаимодействия. С учетом химического сродства кальция к кремнию обеспечивается и взаимодействие ионов кальция и кремния при использовании в качестве источника кремния жидкого стекла. В процессе синтеза оксид кальция ввиду своей высокой химической активности вступает в реакцию с кремнием и алюминием в растворе с образованием сложных соединений (алюмосиликатов натрия и кальция): CaO+NaAlO2+Na2SiO3+H2O→CaO∙Al2O3∙SiO2∙H2O+NaOH; NaAlO2+Na2SiO3+H2O→Na2O∙Al2O3∙SiO2∙H2O. При этом значительно сокращается время прохождения процесса (1-3 часа). Предложенное содержание компонентов исходной смеси является существенным фактором проведения процесса. Введение оксида кальция, используемого в качестве активной химической затравки, менее 3,2 масс.% не способствует значительному ускорению процесса, а в растворе останется избыточный кремний и алюминий, а увеличение содержания оксида кальция более 3,8 масс.% нецелесообразно, так как при увеличении дозировки для образования цеолита будет недостаточно кремния в растворе, а активный кальций останется в твердой фазе в виде гидроксида кальция. Жидкое стекло служит источником кремния и натрия. При увеличении дозировки жидкого стекла более 2,2 масс.% оксид кремния окажется в избытке и останется в растворе. При снижении дозировки жидкого стекла менее 1,6 масс.% будет недостаточно кремния для образования твердого осадка, что снизит выход цеолита. При снижении содержания оборотного раствора менее 94 масс.% для образования цеолита будет недостаточно алюминия, что в целом снизит выход цеолита. При увеличении содержания оборотного раствора более 95,2 масс.% в растворе останется избыточный алюминий и увеличатся материальные потоки.

На фиг.1 изображены результаты рентгенофазового анализа полученного продукта (цеолита).

Предлагаемый способ может быть осуществлен следующим образом. Берут оборотный раствор глиноземного производства состава: Al2O3-120 г/л, Na2O-300 г/л, жидкое натриевое стекло, кристаллический порошка извести СаО при следующем соотношении компонентов, масс.%: оборотный раствор глиноземного производства 94÷95,2; жидкое натриевое стекло 1,6÷2,2; оксид кальция 3,2÷3,8; помещают в автоклавную установку (Parr 4560, США, объемом 450 см3, скорость перемешивания 100 об/мин). Автоклавную обработку проводят при температуре 250°С, давлении 27 атм. в течение 1-3 часа. Далее полученную пульпу охлаждают, фильтруют, отделяют осадок, а раствор возвращают на переработку. Полученный продукт представляет собой белый порошок, по данным рентгенофазового анализа (РФА)(Фиг.1) представляет собой смесь фаз гидроалюмосиликата натрия и кальция (алюмосиликатный цеолит натрия и кальция).

Предлагаемый способ получения цеолита натрия и кальция иллюстрируется следующими примерами.

Пример 1. Берут 200 мл (300 г) оборотного раствора глиноземного производства состава: Al2O3 - 120 г/л, Na2O - 300 г/л, 5 г жидкого стекла (ГОСТ 13078-81 Стекло натриевое жидкое (массовая доля диоксида кремния, % - 24,8-34,0, массовая доля оксида железа и оксида алюминия, %, не более - 0,30, массовая доля оксида кальция, %, не более - 0,20, массовая доля серного ангидрида, %, не более - 0,15, массовая доля оксида натрия, % - 8,0-12,2, силикатный модуль-2,7-3,4)), 10 г порошка извести СаО, что соответствует соотношению, масс.%: оборотный раствор - 95,2, жидкое стекло - 1,6, оксид кальция - 3,2.

Помещают в автоклавную установку (Parr 4560, США, объемом 450 см3, скорость перемешивания 100 об/мин). Автоклавную обработку проводят при температуре 250°С, давлении 27 МПа в течение 1 часа. Далее полученную пульпу охлаждают, фильтруют, отделяют осадок, а раствор возвращают на переработку. Полученный осадок представляет собой белый порошок алюмосиликата натрия (~10%) и кальция(~90%) состава Na2O∙Al2O3∙2,1SiO2∙H2O, CaAl2Si3O10(OH)2, что подтверждено рентгенофазовым анализом (РФА)(Фиг.1) Размер частиц не более 1 мкм.

Пример 2.. Берут 200 мл (300 г) оборотного раствора состава: Al2O3 - 120 г/л, Na2O - 300 г/л, 7 г жидкого стекла (ГОСТ 13078-81 Стекло натриевое жидкое (массовая доля диоксида кремния, % - 24,8-34,0, массовая доля оксида железа и оксида алюминия, %, не более - 0,30, массовая доля оксида кальция, %, не более - 0,20, массовая доля серного ангидрида, %, не более - 0,15, массовая доля оксида натрия, % - 8,0-12,2, силикатный модуль-2,7-3,4)), 12 г порошка извести СаО, что соответствует соотношению, масс.%: оборотный раствор - 94, жидкое стекло - 2,2, оксид кальция - 3,8.

Помещают в автоклавную установку (Parr 4560, США, объемом 450 см3, скорость перемешивания 100 об/мин). Автоклавную обработку проводят при температуре 250°С, давлении 27 МПа в течение 3 часов. Далее полученную пульпу охлаждают, фильтруют, отделяют осадок, а раствор возвращают на переработку. Полученный осадок представляет собой белый порошок алюмосиликата натрия (~5%) и кальция(~95%) состава Na2O∙Al2O3∙2,1SiO2∙H2O, CaAl2Si3O10(OH)2, что подтверждено рентгено-фазовым анализом (РФА). Размер частиц не более 1 мкм.

Таким образом, авторами предлагается способ получения синтетических алюмосиликатных цеолитов кальция и натрия (цеолитов) с использованием оборотных растворов глиноземного производства, позволяющий значительно сократить и упростить процесс получения. При этом способ позволяет использовать «грязные» по кремнию оборотные растворы.

Способ получения синтетического алюмосиликатного цеолита, включающий гидротермальную обработку исходной смеси, содержащей источник оксида алюминия, источник оксида натрия, жидкое натриевое стекло, отличающийся тем, что исходная смесь содержит в качестве источника оксида алюминия и в качестве источника оксида натрия оборотный раствор глиноземного производства и дополнительно оксид кальция (известь) при следующем соотношении компонентов, масс.%: оборотный раствор глиноземного производства 94-95,2; жидкое натриевое стекло 1,6-2,2; оксид кальция 3,2-3,8.



 

Похожие патенты:

Изобретение относится к способам получения покрытий. Описан способ получения покрытия из пористого оксида, содержащего алюмосиликатный цеолит с внекаркасным металлом, включающий (i) обеспечение смеси B продуктов, содержащей алюмосиликатный цеолит с внекаркасным металлом способом, включающим (a) образование смеси A реагентов, содержащей (i) водную суспензию алюмосиликатного цеолита в H+-форме и (ii) металлсодержащее соединение или свободный металл, причем смесь не содержит аммиака, гидроксида аммония или соли аммония, и (b) взаимодействие металла в металлсодержащем соединении или свободном металле с алюмосиликатным цеолитом в H+-форме в смеси A реагентов для образования смеси B продуктов, содержащей алюмосиликатный цеолит с внекаркасным металлом, причем металл представляет собой одно или более из меди, марганца, никеля и палладия; а стадию взаимодействия металла с алюмосиликатным цеолитом в H+-форме проводят за одну реакцию обмена, и после образования смеси B продуктов алюмосиликатный цеолит с внекаркасным металлом не отделяют от смеси B продуктов, и (ii) объединение смеси В продуктов со связующим, модификатором реологических свойств или смесью связующего и модификатора реологических свойств с образованием смеси С покрытия из пористого оксида.

Группа изобретений относится к способу выполнения управляемых щелочных обработок неорганических пористых твердых частиц, в частности к способу повышения мезопористости цеолита, который состоит из одной обработки с последующей стадией отделения твердого вещества, такой как стадия фильтрования, обработанному цеолиту указанным способом, способу для приготовления технического катализатора и к применению обработанного цеолита или технического катализатора, приготовленного с помощью указанного способа в процессах катализа или в процессах адсорбционного или ионного обмена.

Предложена методика синтеза для производства фазово-чистого алюмосиликатного цеолита в качестве катализаторов для обработки выхлопного газа сгорания. Способ получения алюмосиликатного цеолита включает реакцию синтез-геля, содержащего по меньшей мере один цеолит Y, источник фторида, представляющий собой HF, и структурообразующий агент, где реакцию осуществляют при температуре от 120 до 180°C в течение от 1 до 15 дней при значении pH менее чем 11, с образованием кристаллов цеолита с малыми порами CHA, и где катион SDA выбран из триметиладамантаммония, N,N,N-диметилэтилциклогексиламмония, или их комбинации; или цеолита cо средними порами, выбранного из MFI, STW, и катион SDA выбран из тетрапропиламмония, 2-этил-1,3,4-триметилимидазолия или их комбинации; или цеолита с большими порами BEA, где структурообразующий агент представляет собой тетраэтиламмоний, в котором синтез-гель имеет одно или более из следующих композиционных молярных отношений: SiO2/Al2O3 от 12 до 500; SDA2O/Al2O3 от 3 до 125; H2O/Al2O3 от 30 до 7500; OH-/SiO2 от 0,4 до 0,6; и/или F-/SiO2 от 0,4 до 0,6.

Изобретение относится к цеолитам в качестве катализаторов для обработки выхлопного газа. Предложены алюмосиликатный цеолит с каркасом ITW, характеризующийся фазовой чистотой по меньшей мере 90% и отношением кремнезема к глинозему менее 140, алюмосиликатный цеолит с каркасом STW, характеризующийся фазовой чистотой по меньшей мере 90% и отношением кремнезема к глинозему менее 100, и алюмосиликатный цеолит с каркасом СНА, характеризующийся фазовой чистотой по меньшей мере 90% и отношением кремнезема к глинозему 20-500.

Изобретение относится к способам получения модифицированных материалов ЕММ-23. Описан способ получения модифицированного трехвалентным элементом материала EMM-23, содержащего композицию Формулы II: X2O3:(m)YO2 (Формула II), включающий объединение композиции Формулы (III): X2O3:(t)YO2 (Формула III), с агентом, содержащим X, с получением материала Формулы II; где m меньше 150, t больше или равен 150, X представляет собой трехвалентный элемент, выбранный из Al и Fe, и Y представляет собой четырехвалентный элемент, являющийся Si, и корректировку pH комбинации из композиции Формулы III и агента, содержащего X, до величины в диапазоне от 2,4 до 2,6.
Заявленная группа изобретений относится к молекулярному ситу SSZ-95, имеющему каркас MTT-типа, а также к способу его получения. Представлено новое кристаллическое молекулярное сито, обозначенное SSZ-95.

Изобретение относится к способу модификации кристаллического неорганического каркаса адсорбента с помощью покрытий, в частности к способу уменьшения размера входного отверстия пор кристаллического неорганического адсорбента. Способ включает приведение адсорбента в контакт с силиконовым предшественником для образования смеси и обжиг смеси при температуре и в условиях, позволяющих эффективным образом получить адсорбент с требуемым размером входного отверстия пор.

Изобретение относится к цеолитам (молекулярным ситам), которые используются в качестве катализаторов для обработки выхлопных газов от сгорания в двигателях внутреннего сгорания, газовых турбинах, электростанциях, работающих на угле. Алюмосиликатный цеолит содержит по меньшей мере 90% фазы чистой каркасной структуры AEI, имеет кубоидную морфологию и отношение кремнезема к глинозему от 25 до 30.

Изобретение относится к композициям фрагментов водорастворимого и биоабсорбируемого клиноптилолита. Композиция содержит водный раствор водорастворимых фрагментов гидролизованного клиноптилолита и витамин С.

Изобретение относится к синтезу водородной формы (Н-формы) цеолитов для использования в качестве катализаторов. Способ включает стадии: приготовления смеси, содержащей по меньшей мере один источник глинозема, по меньшей мере один источник кремнезема, и по меньшей мере один структурообразующий агент (SDA) в форме гидроксида, причем эта смесь по существу свободна от щелочных металлов; нагревания этой смеси под аутогенным давлением с перемешиванием или смешиванием в течение достаточного времени для кристаллизации кристаллов цеолита водородной формы, имеющих каркас AEI.

Изобретение относится к способу получения железосодержащего алюмосиликатного цеолита ZSM-23, которое можно применить для получения современных высокотехнологичных катализаторов, широко используемых в нефтехимических процессах, таких как изомеризация н-парафинов. Способ получения железосодержащего алюмосиликатного цеолита включает приготовление реакционной смеси с последующим проведением кристаллизации в гидротермальных условиях, охлаждением, фильтрацией, промыванием, сушкой и прокаливанием полученного продукта.
Наверх