Способ изготовления люминесцентного ратиометрического термоиндикатора

Изобретение относится к области оптических измерений и касается люминесцентных индикаторов температуры и может быть использовано для визуального контроля перегрева деталей или оборудования в различных технологических процессах. Предложен способ изготовления люминесцентного ратиометрического термоиндикатора, содержащий этапы, на которых: получают в виде порошка мезогенные комплексы лантаноидов, смесь которых является ратиометрической системой; характеризующийся тем, что подготавливают подложку из кварцевого стекла; наносят упомянутые комплексы в виде порошка на подложку; покрывают упомянутые комплексы в виде порошка крышкой из кварцевого стекла, при этом толщину пространства между подложкой и крышкой задают с помощью пленки материала, инертного к подложке, крышке и упомянутому комплексу; нагревают упомянутые комплексы до температуры перехода в состояние изотропного расплава; лантаноиды представляют собой европий(III) и тербий(III). Технический результат заключается в получении материалов с высокой светопропускающей способностью (более 90%) во всем видимом и ближнем инфракрасном диапазоне длин волн, повышении фотостабильности, обеспечении высокой термочувствительности в широком диапазоне температур. 6 з.п. ф-лы, 8 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области оптических измерений и касается люминесцентных индикаторов температуры и может быть использовано для визуального контроля перегрева деталей или оборудования в различных технологических процессах.

Уровень техники

С быстрым развитием науки и техники традиционные термометры больше не могут отвечать требованиям измерения температуры в некоторых высокотехнологичных областях, таких как наноматериалы и биомедицина. Среди бесконтактных методов измерения температуры в последнее время все больший интерес представляет люминесцентная термометрия благодаря ряду преимуществ перед традиционными термометрами, такими как простота, быстрый отклик, высокая чувствительность и превосходное пространственное и временное разрешение.

Из литературных данных известно, что интенсивность люминесценции термочувствительных материалов существенно зависит от характеристик образца и при каких условиях проводились измерения. Время жизни, в отличие от интенсивности люминесценции, не зависит от условий измерения и коэффициента деградации и поэтому может использоваться для более надежного и точного определения температуры. Однако измерение времени жизни люминесценции требует использования дорогостоящего оборудования, относительно сложной и длительной время подготовки и последующей обработки вычислений. Люминесцентная термометрия, основанная на методе соотношения интенсивностей флуоресценции - FIR, напротив, от этих факторов не зависит, что позволяет устранить фоновые помехи и избежать погрешностей с помощью механизма само калибровки, получая при этом более точные, быстрые и надежные измерения, чем традиционно используемые интенсивности при одной длине волны или излучательные времена жизни. В связи с этим, в настоящее время наиболее востребованы люминесцентные сенсоры температуры с двойным ратиометрическим переходом (FIR) на основе смешанных металлорганических люминофоров. Соединения, которые привлекли наибольшее внимание в люминесцентной термометрии, основанной на методе FIR, являются пары ионов лантаноидов (Ln3+); наиболее популярными из которых являются ионы Tb3+ и Eu3+, поскольку они демонстрируют очень узкие полосы излучения, расположенные в красной и зеленых областях видимого спектра, высокий квантовый выход, большой Стоксов сдвиг и длительное время жизни возбужденных состояний.

Однако ученым так и не удалось получить термостабильные оптически прозрачные пленочные материалы, которые не разрушались при воздействии УФ излучения, выступающие в качестве рабочих элементов для люминесцентных сенсоров температуры. Также актуальной задачей остается получить самокалиброванный термосенсор с относительно большой температурной чувствительностью в широком интервале температур.

Из уровня техники известна термочувствительная пленка на основе Eu(TTA)3DPBT (ТТА=теноилтрифлуороацетонат, ВРВТ=2-(н,н-диэтиланилин-4-ил)-4,6-бис(3,5-диметилпиразол-1-ил)-1,3,5-триазин, Eu=европий) в матрице PVMK (поливинилметилкетон) с относительной чувствительностью -0,94%⋅К-1 в интервале температур 273-343 К. Чувствительный к температуре слой был приготовлен следующим образом: 300 мг PVMK и 3 мг Eu(tta)3(dpbt) растворяли в 2 г дихлорэтана. Полученную смесь наносили с применением ракельного ножа на полиэфирную основу толщиной 100 мкм и высушивали на воздухе. Толщина чувствительного к температуре слоя составляла порядка 10 мкм. Полученный люминесцентный температурный индикатор обеспечивает одновременное и бесконтактное определение температуры и концентрации кислорода и может использоваться в аэродинамических трубах, а также в различных микробиологических и медицинских областях.

Основным недостатком данной термочувствительной пленки является деградация материала при длительном воздействии ультрафиолетового излучения на 7%. [Borisov S. М., Wolfbeis О. S. Temperature-sensitive europium(III) probes and their use for simultaneous luminescent sensing of temperature and oxygen // Analytical Chemistry. - 2006. - V. 78. - №. 14. P. 5094-5101].

Известна термочувствительная пленка на основе Eu(tta)3DEADIT (DEADIT=4-(4,6-ди(1н-индазол-1-ил)-1,3,5-триазин-2-ил)-н,н-диэтилбензенамин, ТТА=теноилтрифлуороацетонат, Eu=европий) в матрице PMAN (полиметакрилонитрил) с относительной чувствительностью -1,3%⋅К-1 в интервале температур 274-323 К. Термочувствительный материал был приготовлен следующим образом: 1,5 мг комплекса Eu(tta)3DEADIT и 100 мг полимера PMAN растворяли в 900 мг ацетона. Полученную смесь наносили с применением ракельного ножа на полиэфирную основу толщиной 100 мкм и высушивали на воздухе, в результате чего были получены термочувствительные пленки толщиной порядка 8 мкм. При возбуждении светодиодами видимого диапазона (425, 435 и 450 нм), материал обеспечивает эффективную сенсибилизацию ионов Eu3+ и может быть успешно допирован в полимерные пленки. Полученный термочувствительный материал на основе комплекса европия, включенный в полимерную матрицу, может использоваться для оптического измерения температуры и для компенсации температурных влияний оптических датчиков.

Основным недостатком данной пленки является деградация материала при длительном воздействии ультрафиолетового излучения на 20% [Borisov S.М., Klimant I. Blue LED excitable temperature sensors based on a new europium(III) chelate // Journal of fluorescence. 2008. V. 18. №. 2. P. 581-589].

Известен ратио метрический термометр на основе Tb0.99Eu0.01(hfa)3(dpbp)]n (dpbp=4,4'-бис(дифенилфосфорил)бифенил, hfa=гексафлуороацетилацетонато, Tb=тербий, Eu=европий), используемый для измерения распределения температуры на поверхностях аэрокосмического самолета и аэродинамической трубы. Данный термометр на основе координационного полимера является термодинамически стабильным и обладает высоким квантовым выходом люминесценции (Ф=40% для [Tb(hfa)3(dpbp)]n при комнатной температуре) и температурной чувствительностью 0.83%⋅К-1 в широком интервале температур 200-500 К [Miyata К. et. al. Chameleon luminophore for sensing temperatures: control of metal-to-metal and energy back transfer in lanthanide coordination polymers // AngewandteChemie International Edition. -2013. -V. 52. -№. 25. - P. 6413-6416].

Однако основным недостатком данного материала является низкая термическая стабильность материалов, составляющих данную ратиометрическую систему, исключая возможность использования его в качестве люминесцентного термометра [Miyata К. et al. Chameleon luminophore for sensing temperatures: control of metal-to-metal and energy back transfer in lanthanide coordination polymers // AngewandteChemie International Edition. - 2013. V. 52. №. 25. P. 6413-6416].

Наиболее близким к заявленному термочувствительному материалу является застеклованная пленка на основе комплекса европия Eu(DBM)3phen в матрице РММА (DBM=дибензоилметан, РММА=ПММА, Phen=1,10-фенантролин, Eu=европий) формулы, показанной на фиг. 1.

Термочувствительный материал получали следующим образом: определенное количество комплекса Eu(DBM)3phen растворяли в этаноле, также в этаноле растворяли метилметакрилат (ММА) в присутствии ВРО-бензоилпероксида. Смесь раствора перемешивали при нагревании до получения однородной массы, затем ее заливали в форму. Далее полученную смесь полимеризовали в сушильном шкафу в течение 24 ч при 50°С, после чего полимер в течение 1 ч при 95°С оставляли отверждаться.

Люминесцентный датчик на основе Eu(DBM)3phen/PMMA демонстрирует высокую интенсивность люминесценции и температурную чувствительность, что свидетельствует о возможности использования его в качестве зонда для определения температуры [Lu S. et al. Preparation and properties of temperature sensitive paint based on Eu(DBM)3phen as probe molecule // Journal of Rare Earths. - 2018. - V. 36. - №. 6. - P. 669-674].

Однако, основным недостатком такого индикатора является то, что Eu(DBM)3phen не является термически стабильным и температура разложения комплекса составляет 185 187°С, что не позволяет в полной мере использовать данный комплекс в качестве люминесцентного термометра, который проявляет высокую чувствительность только в узком диапазоне температур 50-60°С

Раскрытие изобретения

К настоящему моменту были предложены многочисленные сенсорные системы на основе соединений лантаноидов. Однако ученым так не удалось получить термостабильные оптически прозрачные пленочные материалы, которые не разрушались при воздействии УФ излучения. Также по-прежнему остается трудоемким получить само калиброванный термосенсор с относительно большой температурной чувствительностью в широком интервале температур. Поэтому получение новых фото- и термостабильных материалов, обладающих эффективными оптическими характеристиками и высокой чувствительностью к температуре, является актуальной задачей.

Поскольку метод определения температуры по интенсивности люминесценции зависит от условий эксперимента и коэффициента деградации, данный подход не позволит получить более точные значения температур. Метод определения по времени затухания не зависит от этих факторов, но и у данного метода есть свои ограничения, такие как сложная и длительная время подготовка, а также использование дорогостоящего оборудования. Метод определения температуры по соотношению интенсивностей флуоресценции (FIR) от этих факторов не зависит и может быть использован для получения более точного, надежного и быстрого сигнала.

В одном аспекте заявленного решения предложен способ изготовления люминесцентного ратиометрического термоиндикатора, содержащий этапы на которых:

- получают в виде порошка мезогенные комплексы лантаноидов, смесь которых является ратиометрической системой;

характеризующийся тем, что

- подготавливают подложку из кварцевого стекла;

- наносят упомянутые комплексы в виде порошка на подложку;

- покрывают упомянутые комплексы в виде порошка крышкой из кварцевого стекла,

при этом толщину пространства между подложкой и крышкой задают с помощью пленки материала инертного к подложке, крышке и упомянутому комплексу;

- нагревают упомянутые комплексы до температуры перехода в состояние изотропного расплава;

- лантаноиды представляют собой Европий(III) и Тербий(III).

В дополнительных аспектах раскрыто, что скорость нагревания комплексов составляет 5°С/мин; ратиометрическая система состоит из Tb(CPDK3-5)3Phen и Eu(CPDK3-5)3Phen; после перехода в состояние изотропного расплава охлаждают комплексы со скоростью 5°С/мин; пленка инертного материала выполнена из тефлона и ее толщина составляет 3-20 мкм; комплекс содержит ароматические кольца, циклогексановые кольца и длинные углеводородные цепочки; по массе смесь содержит 10% Европия и 90% Тербия.

Основными задачами, решаемыми заявленным изобретением, являются повышение точности измерений, повышение устойчивости к разрушению ультрафиолетом, расширение рабочего диапазона.

Сущность изобретения: в работе предлагается подход к решению вышеописанных проблем, основанный на синтезе мезогенных комплексов лантаноидов, которые по сравнению с известными соединениями, имеют низкую температуру размягчения, являются фото- и термостабильными и способны образовывать оптически прозрачные пленочные материалы при стекловании из расплава. Важно отметить, что прозрачные пленочные материалы невозможно получить из немезогенных комплексов Ln(III).

Техническая задача решается самокалиброванным люминесцентным ратиометрическим индикатором для определения температуры, представляющий собой застеклованную пленку люминофора толщиной 3-20 мкм, помещенную между кварцевыми подложками. В качестве люминофора используют комплексы

трис[1-(4-(4-пропилциклогексил)фенил)октан-1,3-дионато]-[1,10-фенантролин]Ln, где Ln=Eu(III), Tb(III) формулы на фиг. 2. Поскольку ионы Tb3+ и Eu3+ демонстрируют очень узкие полосы излучения, расположенные в красной и зеленых областях видимого спектра, высокий квантовый выход, большой Стоксов сдвиг и длительное время жизни возбужденных состояний, то их применение в заявленном решении считается наиболее перспективным. Наличие в комплексе ароматических колец, циклогексановых колец и длинных углеводородных цепочек обеспечивает заявленные оптические и термические свойства предложенных комплексов.

Технический результат заключается в получении материалов с высокой светопропускающей способностью (более 90%) во всем видимом и ближнем инфракрасном диапазоне длин волн, повышении фотостабильности, обеспечении высокой термочувствительности в широком диапазоне температур.

Краткое описание чертежей

Фиг. 1 показывает формулу прототипа.

Фиг. 2 показывает формулу предложенных комплексов, составляющих ратиометрическую систему.

Фиг. 3 показывает люминесцентный ратиометрический термоиндикатор на основе β-дикетонатных комплексов европия(III) и тербия(III).

Фиг. 4 показывает спектр светопропускания застеклованной пленки на основе β-дикетонатных комплексов европия(III) и тербия(III).

Фиг. 5 показывает зависимость интенсивности люминесценции ратиометрического перехода (FIR) люминесцентного индикатора температуры при 545 для комплекса тербия(III) и 613 нм для комплекса европия(III) от длины волны при воздействии ультрафиолетового излучения.

Фиг. 6 показывает температурную зависимость соотношения интенсивностей 5D4-7F5 (545 нм) и 5D0-7F2 (613 нм) переходов для смешанной застеклованной пленки Tb(CPDK3-5)3Phen/Eu(CPDK3-5)3Phen.

Фиг. 7 показывает зависимость относительной чувствительности ратиометрического люминесцентного термо индикатор а на основе β-дикетонатных комплексов европия(III) и тербия(III) от температуры.

Фиг. 8 показывает зависимость интенсивности люминесценции ратиометрического индикатора температуры на основе Tb(CPDK3-5)3Phen/Eu(CPDK3-5)3Phen, полученных плавлением между кварцевых стекол от времени облучения.

Осуществление изобретения

Комплексы

трис[1-(4-(4-пропилциклогексил)фенил)октан-1,3-дионо]-[1,10-фенантролин] Ln, Ln=Eu(III), Tb(III) получают по следующей методике: при интенсивном перемешивании к горячему спиртовому раствору (t=78°C), содержащему 0,3 ммоль β-дикетона (1-(4-(4-пропилциклогексил)фенил)октан-1,3-дион) - CPDK3-5, 0,1 ммоль Phen, 0,3 ммоль КОН медленно по каплям прикапывали спиртовой раствор 0,1 ммоль LnCl3⋅6Н2О (где Ln=Eu(III), Tb(III)). В результате реакции образуется светло-желтый осадок, который выделяли горячей фильтрацией, промывали горячим спиртом, и высушивали в вакууме при 50°С и остаточном давлении 20 мбар.

На основе синтезированных комплексов трис[1-(4-(4-пропилциклогексил)фенил)октан-1,3-дионато]-[1,10-фенантролин] Ln, где Ln=Eu(III), Tb(III) была сделана общая пленка в %-ном соотношении Eu:Tb 1:9 следующим образом. Отдельно взвешивают комплекс тербия и европия массой равной 4,5 мг и 0,5 мг, соответственно. Взвешенные количества комплекса тербия и европия растворяют в 0,45 мл и 0,05 мл толуола, соответственно. Далее два раствора смешивают и выливают на часовое стекло, оставляя на сутки до полного испарения растворителя. Из полученного высушенного комплекса Tb(CPDK3-5)3Phen/Eu(CPDK3-5)3Phen получают люминесцентный ратиометрический индикатор температуры. Процесс изготовления термочувствительного материала состоит следующим образом. На кварцевую подложку размером 7×15×0,5 мм, расположенную на нагревательном столике поляризационного микроскопа Nikon Eclipse LV 100 POL, наносят необходимое количество порошка комплекса Tb(CPDK3-5)3Phen/Eu(CPDK3-5)3Phen, покрывают второй подложкой, затем нагревают до температуры перехода в состояние изотропного расплава порядка 130°С и охлаждают до комнатной температуры с образованием оптически прозрачных аморфных пленок. Скорость нагревания и охлаждения образцов составляет 5°С/мин, что позволяет сохранить оптические свойства используемых комплексов. Толщина полученных пленок контролируется с использованием тефлона, или микросфер на основе полистирола, или иного подходящего инертного к застеклованным синтезированным комплексам материала, который размещается на поверхности кварцевой подложки и варьируется по толщине от 3 до 20 мкм. Использование кварцевых подложек позволяет защитить полученный материал от воздействия атмосферного кислорода во избежание тушения люминесценции комплексов лантаноидов(III) и фото деструкции материала.

Состав и строение полученных комплексов

трис[1-(4-(4-пропилциклогексил)фенил)октан-1,3-дионо]-[1,10-фенантролин] Ln, где Ln=Eu(III), Tb(III) подтверждены данными элементного анализа и масс-спектрометрией.

Исследование фазовых переходов комплексов

трис[1-(4-(4-пропилциклогексил)фенил)октан-1,3-дионо]-[1,10-фенантролин] Ln, где Ln=Eu(III), Tb(III) проводились методом поляризационной оптической микроскопии. Прибором для исследования служил поляризационный микроскоп Nikon Eclipse LV 100 POL.

Пленки комплексов были приготовлены методом формирования из расплава. В качестве подложки для пленок комплексов использовались кварцевые стекла, которые являются прозрачными в УФ- и видимой областях спектра.

Спектры поглощения пленок комплексов

трис[1-(4-(4-пропилциклогексил)фенил)октан-1,3-дионо]-[1,10-фенантро лин] Ln, где Ln=Eu(III), Tb(III) были зарегистрированы при комнатной температуре с помощью спектрометра Lambda 25 (Perkin-Elmer).

Спектры люминесценции пленок комплексов

трис[1-(4-(4-пропилциклогексил)фенил)октан-1,3-дионо]-[1,10-фенантролин] Ln, где Ln=Eu(III), Tb(III) при различных температурах 143-277 К получены на оптическом спектрометре. Для варьирования температуры применялась система продувки парами азота. Температура контролировалась с помощью цифрового термометра Testo 735-2 (точность ±0,3 К). Эксперименты в диапазоне температур 143-277 К проводились с использованием системы температурной стабилизации. Источником возбуждения люминесценции служил импульсный азотный лазер ЛГИ-21 (длина волны 337 нм, длительность импульса 10 нс, частота повторения импульсов 100 Гц, средняя мощность 2,1 мВт).

Благодаря особенностям строения, синтезированные комплексы способны образовывать оптически прозрачные пленочные материалы с высокой светопропускающей способностью (более 90%) во всем видимом и ближнем инфракрасном диапазоне длин волн. Было установлено, что пленки, полученные путем плавления между кварцевыми подложками, обладают высокой фотостабильностью. Предлагаемый способ получения пленок путем плавления между кварцевых подложек позволяет защитить полученные материалы от содержащегося в атмосфере кислорода и тем самым избежать процессов фотоокисления под действием УФ излучения. Установлено, что застеклованная пленка на основе комплекса Tb(CPDK3-5)3Phen/Eu(CPDK3-5)3Phen характеризуется средней температурной чувствительностью-2,3% К-1 в интервале 143-277 К. Все вышеперечисленные факторы являются перспективными для использования полученного термочувствительного материала в качестве высокочувствительного люминесцентного ратиометрического индикатора температуры.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Люминесцентный ратиометрический индикатор температуры представляет собой застеклованную пленку комплексов Ln(III) 1, толщина которой варьируется с помощью спейсера тефлоновой полоской 2, помещенной между двумя кварцевыми подложками 3 (фиг. 3).

Светопропускающую способность люминесцентного ратиометрического индикатора температуры исследуют при комнатной температуре с помощью спектрометра Lambda 25 (Perkin-Elmer) в интервале 200-1000 нм. Как видно из фиг. 4, полученный материал на основе комплексов Tb(CPDK3-5)3Phen/Eu(CPDK3-5)3Phen обладает высокой светопропускающей способностью (более 90%) во всем видимом и ближнем инфракрасном диапазоне длин волн (450-800 нм) и эффективно поглощает свет в области 385-405 нм.

Температурная зависимость люминесцентных свойств комплексов Tb(CPDK3-5)3Phen/Eu(CPDK3-5)3Phen представлена на фиг. 5. Спектры люминесценции при различных температурах получены на оптическом спектрометре. Для варьирования температуры применялась система продувки парами азота. Температура контролировалась с помощью цифрового термометра Testo 735-2 (точность ±0,3 К). Эксперименты в диапазоне температур 143-277 К проводились с использованием системы температурной стабилизации. Источником возбуждения люминесценции служил импульсный азотный лазер ЛГИ-21 (длина волны 337 нм, длительность импульса 10 нс, частота повторения импульсов 100 Гц, средняя мощность 2,1 мВт). Как видно из фиг. 6 полученные материалы эффективно преобразуют световую энергию в интенсивную монохроматическую люминесценцию с характерным пиком на 545 нм для комплекса тербия(III) и 613 нм для комплекса европия(III), соответственно. Из фиг. 5 видно, что интенсивность люминесценции ионов тербия 5D47F5 (545 нм) при понижении температуры от 143 до 174 возрастает, в то время как интенсивность люминесценции ионов европия 5D07F2 (613 нм) остается неизменной. Таким образом, по интенсивности люминесценции ионов европия можно определить интенсивность люминесценции ионов тербия, для получения более точного результата температуры.

Термометрическую оценку смешанной пленки на основе комплексов Tb(CPDK3-5)3Phen/Eu(CPDK3-5)3Phen проводят с использованием ратиометрического метода, основанного на соотношении интенсивностей флуоресценции (FIR), состоящего из определения соотношения двух относительных интенсивностей при каждой температуре. В этой работе мы решили использовать интегрированную область наиболее интенсивных полос излучения вместо определения интенсивности одного перехода, чтобы избежать недостатков, связанных с влиянием источника возбуждающего света, и получить максимальную точность в каждом эксперименте. Температурная зависимость люминесцентных свойств застеклованной пленки комплексов

Tb(CPDK3-5)3Phen/Eu(CPDK3-5)3Phen была исследована в диапазоне 143-277 К, представленная на фиг. 6. Результаты экспериментов показывают, что с увеличением температуры пленки комплексов Tb(CPDK3-5)3Phen/Eu(CPDK3-5)3Phen проявляется монотонное снижение интенсивности люминесценции. Это связано с увеличением вероятности безызлучательных переходов по мере повышения температуры, что приводит к уменьшению интенсивности излучательных переходов и, как следствие, к гашению люминесценции.

Температурная чувствительность люминесценции ратиометрического люминесцентного индикатора температуры на основе комплексов Tb(CPDK3-5)3Phen/Eu(CPDK3-5)3Phen представлена на фиг. 7. Для термометров с двумя излучательными центрами=Tb/Eu, используется преобразование интенсивности в температуру с помощью термометрического параметра А.

Д=ITb/IEu,

где ITb, Ieu - интегральные интенсивности двух излучательных переходов.

Исходя из термометрического параметра, можно количественно рассчитать относительную температурную чувствительность для ратиометрического термометра с использованием следующего уравнения:

Из данного соотношения видно, что температура коррелирует с А, следовательно, при работе данного термометра в дополнительной калибровке интенсивности люминесценции нет необходимости.

Таким образом получается, что значение относительной температурной чувствительности S(r)I/I изменяется от 0,01% К-1 при 143 К до -1,73% К-1 при 277 К. При этом среднее значение S(r)I/I составляет около -2,3% К-1 в диапазоне от 143 до 277 К.

Исследование фотостабильности ратиометрического индикатора температуры на основе смешанной пленки комплекса Tb(CPDK3-5)3Phen/Eu(CPDK3-5)3Phen проводилось путем измерения люминесцентных характеристик после различного времени облучения УФ светом полученных материалов. В качестве источника ультрафиолетового света была выбрана ультрафиолетовая лампа UVGL-58 Handheld UV Lamp с длиной волны излучения 365 нм и мощностью 6 Ватт. Зависимости интенсивностей люминесценции ратиометрического индикатора температуры на основе смешанной пленки комплекса европия(III) и тербия(III), полученных плавлением между кварцевыми подложками от времени облучения, представлены на фиг. 8, соответственно. Во время регистрации спектра при возбуждении образца лазерным пучком со средней мощностью 0,17 мВт изменений фотофизических свойств пленки не наблюдалось, что свидетельствует о фото стабильности полученного термочувствительного материала.

Варианты осуществления не ограничиваются описанными здесь вышеуказанными вариантами, специалисту в области техники на основе информации, изложенной в описании, и знаний уровня техники станут очевидны и другие варианты осуществления изобретения, не выходящие за пределы сущности и объема данного изобретения.

Элементы, упомянутые в единственном числе, не исключают множественности элементов, если отдельно не указано иное.

Способы, раскрытые здесь, содержат один или несколько этапов, или действий для достижения описанного способа. Этапы и/или действия способа могут заменять друг друга, не выходя за пределы объема формулы изобретения. Другими словами, если не определен конкретный порядок этапов или действий, порядок и/или использование конкретных этапов и/или действий может изменяться, не выходя за пределы объема формулы изобретения.

Несмотря на то, что примерные варианты осуществления были подробно описаны и показаны на сопроводительных чертежах, следует понимать, что такие варианты осуществления являются лишь иллюстративными и не предназначены ограничивать более широкое изобретение, и что данное изобретение не должно ограничиваться конкретными показанными и описанными компоновками и конструкциями, поскольку различные другие модификации могут быть очевидны специалистам в соответствующей области.

Признаки, упомянутые в различных зависимых пунктах формулы, а также реализации, раскрытые в различных частях описания, могут быть скомбинированы с достижением полезных эффектов, даже если возможность такого комбинирования не раскрыта явно.

1. Способ изготовления люминесцентного ратиометрического термоиндикатора, содержащий этапы, на которых:

- получают в виде порошка мезогенные комплексы лантаноидов, смесь которых является ратиометрической системой;

характеризующийся тем, что

- подготавливают подложку из кварцевого стекла;

- наносят упомянутые комплексы в виде порошка на подложку;

- покрывают упомянутые комплексы в виде порошка крышкой из кварцевого стекла, при этом толщину пространства между подложкой и крышкой задают с помощью пленки материала, инертного к подложке, крышке и упомянутому комплексу;

- нагревают упомянутые комплексы до температуры перехода в состояние изотропного расплава;

- лантаноиды представляют собой европий(III) и тербий(III).

2. Способ по п.1, в котором скорость нагревания комплексов составляет 5°С/мин.

3. Способ по п.1, в котором ратиометрическая система состоит из Tb(CPDK3-5)3Phen и Eu(CPDK3-5)3Phen.

4. Способ по п.1, в котором после перехода в состояние изотропного расплава охлаждают комплексы со скоростью 5°С/мин.

5. Способ по п.1, в котором пленка инертного материала выполнена из тефлона и ее толщина составляет 3-20 мкм.

6. Способ по п.1, в котором комплекс содержит ароматические кольца, циклогексановые кольца и длинные углеводородные цепочки.

7. Способ по п.1, в котором по массе смесь содержит 10% европия и 90% тербия.



 

Похожие патенты:

Изобретение относится к области нанотехнологий и термометрии и может быть использовано для измерения ультралокальных температурных полей с нано-разрешением в биомедицине, биотехнологиях, а также микроэлектронике. Заявляемый способ ультралокального оптического измерения температуры основан на возбуждении люминесценции примесных центров алмазной частицы, регистрации спектра люминесценции алмазной частицы, предварительной калибровке алмазной частицы в зависимости от температуры и положения максимума бесфононной линии люминесценции алмазной частицы, определении температуры в исследуемой среде с использованием данных предварительной калибровки, при этом выбирают алмазную частицу нанометрового размера, размещают алмазную частицу в торце наноалмазного зонда, который устанавливают в микроманипуляторе, с помощью которого прецизионно размещают наноалмазный зонд в заданной точке исследуемой среды для определения ее температуры.

Изобретение относится к области биотехнологии и касается методик измерения локальной температуры среды, в частности внутриклеточной температуры. Предлагается новый подход к измерению внутриклеточной температуры с высокой точностью (от 0,1 до 0,3°С) и возможностью измерения с высоким пространственным разрешением (до 300 нм) в биологических средах (клетках и тканях), а также температуры клеток и тканей с помощью оптических методов.

Изобретение относится к области неорганической химии и может быть использовано при получении необратимого люминесцентного индикатора температуры. Сначала растворяют диоксид церия и оксид тербия(III,IV) в концентрированной ортофосфорной кислоте.

Заявлена группа изобретений, раскрывающая систему и способ для контроля системы. При реализации заявленной группы изобретений подвергают изделия жестким внешним условиям, получают изображения светоизлучающего датчика, находящегося в прямом контакте с изделием, с использованием высокоскоростной системы получения изображений и анализируют изображения с использованием высокоскоростной системы обработки данных для одновременного предоставления карты температур и карты механических напряжений в изделии.

Изобретение относится к способу измерения полей температуры на поверхности исследуемого объекта с помощью люминесцентных преобразователей температуры. Способ включает нанесение на поверхность покрытия, люминесцирующего при освещении возбуждающим излучением, интенсивность люминесценции которого зависит от температуры.

Изобретение относится к пассивным акустическим рефлекторам и маркерам, используемым под водой. Акустический рефлектор, главным образом, для подводного применения, представляет собой оболочку, которая окружает сердечник.
Изобретение относится к термометрии, в частности к бесконтактным способам определения температур объектов, которые могут находиться в экстремальных зонах. .
Изобретение относится к термометрии, в частности к бесконтактным способам определения температур объектов, которые могут находиться в экстремальных зонах. .

Изобретение относится к технике термометрии и может быть использовано для измерения температуры практически во всех отраслях народного хозяйства. .
Изобретение относится к медицине и может быть использовано в анестезиологии, в общей хирургии и интенсивной терапии. .

Изобретение относится к получению алюмоорганических соединений, а именно к способу получения триалкилалюминия. Предложенный способ включает взаимодействие активированного алюминия и водорода в присутствии триалкилалюминия при нагревании и повышенном давлении с образованием смеси диалкилалюминийгидрида и триалкилалюминия с последующей обработкой полученной смеси олефином и выделением целевого продукта, при этом взаимодействие активированного алюминия и водорода в присутствии триалкилалюминия проводят при температуре 120-135°С и давлении не более 2,9 МПа, первичную обработку смеси диалкилалюминийгидрида и триалкилалюминия олефином проводят при температуре 150-180°С и давлении 4,0-6,0 МПа, а выделение целевого продукта осуществляют совместно с дополнительной обработкой олефином всей полученной смеси диалкилалюминийгидрида и триалкилалюминия, содержащей 40-60 мас.% диалкилалюминийгидрида, в массовом соотношении 5-10:1 при охлаждении смеси до температуры 120-145°С и понижении давления до 0,01-0,09 МПа.
Наверх