Электролит для двухслойного электрохимического конденсатора и способ его приготовления
Владельцы патента RU 2782246:
Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) (RU)
Изобретение относится к области электротехники, в частности к электролиту для двухслойного электрохимического конденсатора и способу его приготовления. Согласно изобретению в состав электролита входят ионоген в виде соли четвертичного аммониевого основания и смесь органических растворителей, где основной растворитель ацетонитрил, а сорастворитель выбран из числа эфиров, при этом в качестве соли четвертичного аммониевого основания используют тетрафторборат метилтриэтиламмония, в качестве сорастворителя - этилацетат, и дополнительно в качестве компонента, понижающего температуру плавления электролита, вводят толуол, или этоксиэтан, или виниленкарбонат. Расширение границ температурного диапазона работоспособности двухслойного электрохимического конденсатора с напряжением 2,5 В до интервала от минус 65°С до 65°С без существенного снижения емкостных характеристик во всем интервале рабочих температур, в том числе после прохождения 10000 циклов заряда-разряда, и обеспечение «холодного запуска» током не менее 0,5 А/г при температуре минус 65°С является техническим результатом изобретения. 2 н.п. ф-лы, 3 табл., 3 пр.
Изобретение относится к области электротехники, в частности к электролиту для двухслойного электрохимического конденсатора и способу его приготовления. Изобретение может быть использовано в производстве двухслойных конденсаторов, применяемых для накопления и импульсной отдачи энергии в гибридных системах хранения энергии в паре с аккумуляторами, на гибридном транспорте и электротранспорте для рекуперации энергии торможения, а также в качестве источников питания при запуске двигателей, турбин, в том числе в особых климатических условиях и т.п.
Удельные энергоемкость и мощность двухслойных конденсаторов определяются свойствами пары электродный материал - электролит, а диапазон температурного интервала эксплуатации зависит от свойств электролита. Использование ацетонитрила в качестве растворителя в составе электролита гарантирует работоспособность двухслойных конденсаторов в температурном интервале от минус 40°С до 65°С. Однако для ряда областей применения, таких как энергообеспечение в условиях Крайнего Севера и Арктики, требуются двухслойные конденсаторы с диапазоном рабочих температур от минус 65 до 65°С, сохраняющие высокие емкостные и мощностные характеристики во всем интервале температур.
Известен электролит для двухслойного электрохимического конденсатора, описанный в патенте US 7675737, содержащий ацетонитрил в качестве основного растворителя, по крайней мере два апротонных сорастворителя, таких как этиленкарбонат, γ-бутиролактон, метилформиат, смесь проводящих солей и ионных жидкостей, концентрация которых составляет 2 моль/л.
Недостатком этого электролита является низкая электропроводность при пониженных температурах (менее 2 мСм/см при минус 60°С), что приводит к значительному снижению удельных емкостных характеристик конденсатора. Кроме того, из-за наличия в составе электролита низкокипящего компонента, такого, как метилформиат, электролит не обеспечивает ресурсной стабильности при температурах выше 25°С.
Известен электролит для двухслойного электрохимического конденсатора, описанный в патенте US 8804309, содержащий ацетонитрил в качестве основного растворителя и 1,3-диоксолан, метилформиат, пропионитрил и бутиронитрил в качестве сорастворителей, соли четвертичных аммониевых оснований в качестве ионогенов.
Недостатком этого электролита является низкая электропроводность, поскольку предотвращения кристаллизации ионогенов их вводят в электролит в пониженных концентрациях - от 0,1 до 0,75 моль/л. Кроме того, из-за наличия в составе электролита низкокипящего компонента, такого, как метилформиат, и электрохимически нестабильного компонента, такого, как 1,3-диоксолан, предложенный электролит не обеспечивает ресурсной стабильности при температурах выше 25°С.
Известен электролит для двухслойного электрохимического конденсатора, описанный в патенте CN 102254691 А, предназначенный для эксплуатации при ультранизких температурах и представляющий собой раствор четвертичных аммониевых солей в пропиленкарбонате или ацетонитриле с нитрилами или сложными эфирами в качестве низкотемпературных добавок. Однако наиболее низкой температурой, при которой охарактеризованы свойства этого электролита, является -40°С.
Недостатком этого электролита является низкая ресурсная стабильность при комнатной и повышенных температурах, а также недостаточно широкое электрохимическое окно.
Известен электролит для двухслойного электрохимического конденсатора, описанный в патенте CN 105070528 A, обеспечивающий стабильную работу при температурах до минус 60 градусов. В качестве ионогенов в нем используются соли четвертичных аммониевых оснований, а в качестве полярных апротонных растворителей - ацетонитрил и другие нитрилы. Кроме того, электролит содержит низкотемпературные добавки - алкилнитраты.
Недостатком этого электролита является использование в его составе высокотоксичных соединений: нитрометана, нитроэтана, 2-нитропропана (см. «Федеральный регистр потенциально опасных химических и биологических веществ»). Кроме того, в патенте не приводятся данные об электрохимическом окне, емкостных характеристиках и ресурсной стабильности при различных температурах.
Известен электролит для двухслойного электрохимического конденсатора, описанный в патенте CN 104681302 A, который содержит в своем составе смесь солей четвертичных аммониевых оснований, ионных жидкостей, ацетонитрил в качестве полярного апротонного растворителя, а также одну или несколько низкотемпературных добавок - диэтилкарбонат, этилпропионат, диметилсульфит, изобутилформиат, бутилацетат, гексилацетат, бутилвалериат. Электролит обеспечивает высокую ресурсную стабильность при 70°С - после 10 тыс. циклов гальваностатического заряда-разряда происходит снижение емкости не более, чем на 10%. Наиболее низкая температура, при которой способен заряжаться и разряжаться двухслойный конденсатор с данным электролитом, составляет минус 65°С.
Недостатком этого электролита является значительное снижение емкости двухслойного конденсатора при понижении температуры: так, при температуре минус 65°С сохраняется только от 43 до 49% емкости двухслойного конденсатора по сравнению с его емкостью при 25°С.
Известен электролит для двухслойного электрохимического конденсатора, описанный в патенте US 20210057170 A1, содержащий в качестве полярного апротонного растворителя ацетонитрил, в качестве низкотемпературных добавок низкокипящие растворители, такие как метилформиат и 1,3-диоксолан, а в качестве ионогена - тетрафторборат 1,1'-спиробипироллидиния. Данный электролит обеспечивает высокие емкостные характеристики двухслойного конденсатора в интервале температур от минус 100°С до 20°С.
Недостатком этого электролита является низкая концентрация ионогена (не более 0,5 М) и высокая доля малополярного сорастворителя, из-за чего удельная электропроводность электролита недостаточно высока. Кроме того, из-за низкой температуры кипения сорастворителей условия эксплуатации электролита ограничены температурами не выше 20°С, а электролиты, содержащие 1,3-диоксолан, обладают низкой ресурсной стабильностью из-за полимеризации данной добавки.
Известен электролит для двухслойного электрохимического конденсатора, описанный в патенте CN 109192536 A, в котором в качестве ионогена используют ионную жидкость с катионами 1-метил-3-метилимидазолиния и N,N-метилпропилпиперидиния, пропиленкарбонат или ацетонитрил в качестве полярного апротонного растворителя, а также метилацетат, метилформиат, пентан и безводный спирт в качестве низкотемпературной добавки. Предложенный электролит обеспечивают работоспособность двухслойного конденсатора при температурах от минус 90°С до 25°С.
Недостатком этого электролита является снижение емкостных характеристик более чем в 2 раза при понижении температуры. Кроме того, из-за наличия в составе электролита низкокипящих компонентов, таких, как метилформиат, пентан и др., предложенный электролит не обеспечивает ресурсной стабильности при температурах выше 25°С.
Наиболее близким по технической сущности и достигаемому результату является электролит, описанный в патенте RU 2612192 С1, обеспечивающий работоспособность двухслойного электрохимического конденсатора в интервале рабочих температур от минус 55°С до 65°С при номинальном напряжении 2,5 В. В состав электролита входят смесь ионогенов в виде соли четвертичного алкиламмония - тетрафторбората тетраэтиламмония с ионной жидкостью - тетрафторборатом 1-этил-3-метилимидазолия, смесь органических растворителей, где основной растворитель ацетонитрил, а сорастворитель выбран из числа нитрилов, или циклических карбонатов, или лактонов, или эфиров, или циклических эфиров, и газопоглощающая добавка, причем концентрация ионогена в электролите составляет 12-47 мас. %, основной растворитель занимает 30-78 мас. %, сорастворитель - 5-35 мас. %, а дополнительная газопоглощающая добавка - 0,1-5 мас. %.
Недостатком прототипа является недостаточная нижняя граница температурного интервала работоспособности, которая составляет минус 55°С. Кроме того, входящий в значительных количествах в состав электролита сорастворитель этаннитрил обладает высокой токсичностью (см. «Федеральный регистр потенциально опасных химических и биологических веществ»).
С учетом того обстоятельства, что двухслойные электрохимические конденсаторы должны сохранять работоспособность при температурах до минус 65°С и обеспечивать «холодный запуск» током не менее 0,5 А/г при этих температурах, необходимо расширить диапазон рабочих температур электролита для двухслойного электрохимического конденсатора в область низких температур.
Задачей предлагаемого изобретения является расширение границ температурного диапазона работоспособности двухслойного электрохимического конденсатора с напряжением 2,5 В до интервала от минус 65°С до 65°С без существенного снижения емкостных характеристик во всем диапазоне рабочих температур, в том числе после прохождения 10000 циклов заряда-разряда, и обеспечение «холодного запуска» током не менее 0,5 А/г при температуре минус 65°С.
Поставленная задача решается путем использования электролита, в состав которого входят ионоген в виде соли четвертичного аммониевого основания и смесь органических растворителей, где основной растворитель ацетонитрил, а сорастворитель выбран из числа эфиров, при этом в качестве соли четвертичного аммониевого основания используют тетрафторборат метилтриэтиламмония, в качестве сорастворителя - этилацетат, и дополнительно в качестве компонента, понижающего температуру плавления электролита, вводят толуол, или этоксиэтан, или виниленкарбонат при следующем соотношении компонентов в мас. %:
- тетрафторборат метилтриэтиламмония - 23-30,
- ацетонитрил - 44-49,
- этилацетат - 19-21,
- толуол, или этоксиэтан, или виниленкарбонат - 3-10.
Поставленная задача решается также способом приготовления электролита, который заключается в том, что ацетонитрил, этилацетат и компонент, понижающий температуру плавления электролита, смешивают в течение 0,5 часа, затем в полученной смеси растворяют тетрафторборат метилтриэтиламмония путем перемешивания в течение 3 часов, после этого выдерживают полученный раствор над молекулярными ситами в течение 72 часов, затем электролит фильтруют и контролируют остаточную влагу в электролите титрованием по Фишеру, причем содержание остаточной влаги не должно составлять более 0,002 мас. %.
Предлагаемое изобретение иллюстрируется следующими примерами.
Пример 1.
Состав электролита:
- метилтриэтиламмония тетрафтороборат,
- ацетонитрил,
- этилацетат,
- виниленкарбонат.
Процесс приготовления заключается в смешивании 420 г ацетонитрила (48,3 мас. %), 180 г этилацетата (20,7 мас. %) и 26 г виниленкарбоната (3,0 мас. %) в течение 0,5 часа без нагревания и растворении в полученной смеси 244 г тетрафторбората метилтриэтиламмония (28,0 мас. %) путем перемешивания компонентов в течение 3 часов без нагревания, выдерживания полученного раствора над молекулярными ситами 3 А в течение 72 часов, фильтрования электролита, контроля содержания остаточной влаги титрованием по Фишеру. Содержание остаточной влаги составляет 0,0014 мас. %.
Испытания эксплуатационных характеристик электролита были проведены в составе двухслойного электрохимического конденсатора на номинальное напряжение 2,5 В с электродами, изготовленными из электродной ленты GMCC-61255 (Китай), состоящей из алюминиевой фольги и нанесенного на нее слоя на основе активированного угля. Полученные результаты приведены в таблице 1.
Пример 2.
Состав электролита:
- метилтриэтиламмония тетрафтороборат,
- ацетонитрил,
- этилацетат,
- толуол.
Процесс приготовления заключается в смешивании 420,3 г ацетонитрила (46,7 мас. %), 177,3 г этилацетата (19,7 мас. %) и 90,0 г толуола (10,0 мас. %.) в течение 0,5 часа без нагревания и растворении в полученной смеси растворителей 212,4 г тетрафторбората метилтриэтиламмония (23,6 мас. %) путем перемешивания компонентов в течение 3 часов без нагревания, выдерживания полученного раствора над молекулярными ситами 3 А в течение 72 часов, фильтрования электролита, контроля содержания остаточной влаги титрованием по Фишеру. Содержание остаточной влаги составляет 0,0012 мас. %.
Испытания эксплуатационных характеристик электролита были проведены в составе двухслойного электрохимического конденсатора на номинальное напряжение 2,5 В с электродами, изготовленными из электродной ленты GMCC-61255 (Китай), состоящей из алюминиевой фольги и нанесенного на нее слоя на основе активированного угля. Полученные результаты приведены в таблице 2.
Пример 3
Состав электролита:
- тетрафтороборат метилтриэтиламмония,
- ацетонитрил,
- этилацетат,
- этоксиэтан.
Процесс приготовления заключается в смешивании 390 г ацетонитрила (44,8 мас. %), 166,5 г этилацетата (19,1 мас. %)) и 61 г этоксиэтана (7,0 мас. %.) в течение 0,5 часа без нагревания и растворении в полученной смеси растворителей 254 г тетрафторбората метилтриэтиламмония (29,1 мас. %) путем перемешивания компонентов в течение 3 часов без нагревания, выдерживания полученного раствора над молекулярными ситами 3 А в течение 72 часов, фильтрования электролита, контроля содержания остаточной влаги титрованием по Фишеру. Содержание остаточной влаги составляет 0,0015 мас. %.
Испытания эксплуатационных характеристик электролита были проведены в составе двухслойного электрохимического конденсатора на номинальное напряжение 2,5 В с электродами, изготовленными из электродной ленты GMCC-61255 (Китай), состоящей из алюминиевой фольги и нанесенного на нее слоя на основе активированного угля. Полученные результаты приведены в таблице 3.
Как видно из примеров, разработанный электролит обладает следующими преимуществами.
1. Обеспечивает расширенный температурный интервал работоспособности двухслойного электрохимического конденсатора на номинальное напряжение 2,5 В от минус 65°С до 65°С.
2. Обеспечивает высокую стабильность емкостных характеристик двухслойного электрохимического конденсатора во всем интервале рабочих температур, что проявляется в снижении электрической емкости не более чем на 12-30% при температуре минус 65°С по отношению к электрической емкости при температуре 25°С.
3. Обеспечивает высокую плотность тока разряда двухслойного электрохимического конденсатора при температуре минус 65°С после длительного хранения при температурах ниже минус 65°С (так называемый «холодный запуск»).
4. Обеспечивает высокую ресурсную стабильность двухслойного электрохимического конденсатора, что проявляется в отсутствии снижения электрической емкости после 10 тыс. циклов заряда-разряда более чем на 10-20% от первоначальной.
5. Снижает стоимость электролита за счет использования более дешевых компонентов.
6. Не содержит высокотоксичных компонентов.
Таким образом, примеры реализации заявленного изобретения доказывают достижение технического результата, заключающегося в расширении границ температурного диапазона работоспособности двухслойного электрохимического конденсатора на номинальное напряжение 2,5 В до интервала от минус 65°С до 65°С без существенного снижения емкостных характеристик во всем интервале рабочих температур, в том числе после прохождения 10000 циклов заряда-разряда, а также в возможности «холодного запуска» токами не ниже 0,5 А/г.
Уменьшение содержания тетрафторбората метилтриэтиламмония в составе электролита ниже 23 мас. % ведет к понижению электропроводности электролита и уменьшению плотности тока разряда. Повышение содержания тетрафторбората метилтриэтиламмония выше 30 мас. % приводит к его кристаллизации при температурах ниже минус 60°С. Снижение содержания этилацетата в составе электролита ниже 19 мас. %, а также компонентов, понижающих температуру плавления электролита ниже 3 мас. % приводит к повышению нижней границы температурного интервала эксплуатации электролита. Повышение содержания этилацетата в составе электролита выше 21 мас. %, а также компонентов, понижающих температуру плавления электролита выше 10 мас. % приводит к снижению удельной электропроводности электролита и уменьшению плотности тока разряда.
1. Электролит для двухслойного электрохимического конденсатора с напряжением 2,5 В, включающий ионоген в виде соли четвертичного аммониевого основания и смесь органических растворителей, где основной растворитель ацетонитрил, а сорастворитель выбран из числа эфиров, отличающийся тем, что в качестве соли четвертичного аммониевого основания используют тетрафторборат метилтриэтиламмония, в качестве сорастворителя - этилацетат, и дополнительно в качестве компонента, понижающего температуру плавления электролита, вводят толуол, или этоксиэтан, или виниленкарбонат при следующем соотношении компонентов, мас. %:
- тетрафторборат метилтриэтиламмония - 23-30,
- ацетонитрил - 44-49,
- этилацетат - 19-21,
- толуол, или этоксиэтан, или виниленкарбонат - 3-10.
2. Способ приготовления электролита для двухслойного электрохимического конденсатора по пункту 1, заключающийся в том, что ацетонитрил, этилацетат и компонент, понижающий температуру плавления электролита, смешивают в течение 0,5 часа, затем в полученной смеси растворяют тетрафторборат метилтриэтиламмония путем перемешивания в течение 3 часов, после этого выдерживают полученный раствор над молекулярными ситами в течение 72 часов, затем электролит фильтруют и контролируют остаточную влагу в электролите титрованием по Фишеру, причем содержание остаточной влаги не должно составлять более 0,002 мас. %.