Состав и способ изготовления сырьевой смеси ячеистых материалов

Группа изобретений относится к промышленности строительных материалов, а именно к сырьевой смеси для изготовления теплоизоляционных ячеистых материалов и способу ее приготовления. Сырьевая смесь для изготовления ячеистых материалов включает, мас.%: портландцемент марки 500 40-45, заполнитель – керамзит дробленый крупностью 0-5 мм или кварцевый песок с Мк р. 1,8-2,0 32, пенообразователь ПБ-2000 2, полимерное волокно строительное микроармирующее - ВСМ диаметром 20-50 мкм и длиной 3-18 мм или базальтовое волокно диаметром 13-17 мкм и длиной 6-12 мм 3-10, суперпластификатор Sika ViscoCrete-3 0,2, модифицирующую добавку – коллоидный нанодисперсный полисиликат натрия с силикатным модулем 6,5 2-4, воду - остальное. Технический результат – повышение прочности на сжатие и растяжение, повышение коэффициента конструктивного качества ячеистых материалов. 2 н.п. ф-лы, 1 табл.

 

Изобретение относится к промышленности строительных материалов, а именно к составам и способам изготовления теплоизоляционных ячеистых материалов.

Известны сырьевая смесь для изготовления ячеистых материалов и способ ее приготовления [1], сущность которого состоит в том, что сырьевая смесь для изготовления ячеистых материалов, включающая связующее вещество, заполнитель, порообразователь - пенообразователь, дисперсную арматуру - волокна и воду, содержит волокна с модулем упругости волокон больше модуля упругости ячеистого материала, поперечным сечением, не превышающим 1 мм2 и с отношением длины к площади поперечного сечения более 100 мм‐1 и дополнительно добавку, а в части способа приготовления сырьевой смеси включает перемешивание в смесителе связующего вещества, заполнителя, порообразователя - пенообразователя, дисперсной арматуры - волокон и воды, при этом волокна вводятся хаотично, а при перемешивании дополнительно вводят добавку при следующей последовательности введения компонентов в смеситель: вода, связующее, добавка, заполнитель, пенообразователь, волокна.

Недостатком известного является невысокая прочность полученного пенофибробетона на сжатие и растяжение при использовании полимерных и базальтовых дисперсных волокон и, как следствие, небольшие значения коэффициента конструктивного качества ячеистых материалов, а также низкая эффективность процесса приготовления смеси.

Наиболее близкими к заявляемому техническому решению по совокупности признаков, т.е. прототипами, являются состав и способ изготовления ячеистых материалов [2], включающая: при следующем соотношении компонентов, мас.%: портландцемент марки 500 40-45; заполнитель - керамзит дробленый крупностью 0-5 мм или кварцевый песок с Мк р. 1,8-2,0 32; пенообразователь ПБ-2000 2; полимерное волокно диаметром 20-50 мкм и длиной 3-18 мм или базальтовое волокно диаметром 13-17 мкм и длиной 6-12 мм 3-10; суперпластификатор Sika ViscoCrete-3 0,2; многослойные углеродные нанотрубки диаметром 8-40 нм и длиной 2-50 мкм 0,4; вода остальное, а также способ приготовления указанной сырьевой смеси, включающий предварительную обработку указанного суперпластификатора с водой и указанными нанотрубками в течение 30-60 с в ультразвуковом диспергаторе с частотой 20 кГц, перемешивание в смесителе полученной суспензии с портландцементом марки 500, заполнителем, пенообразователем ПБ-2000 и волокном в течение 5-6 мин.

Недостатком этого состава и способа является низкие показатели прочности и коэффициента конструктивного качества ячеистых материалов. Кроме того известные методы получения углеродных нанотрубок технологически сложны и дороги. Большой проблемой в процессе получения нанотрубок является управление процессом их роста, особенно при синтезе одно- и многослойных нанотрубок.

Технической задачей заявляемого изобретения является повышение прочности на сжатие и растяжение, коэффициента конструктивного качества ячеистых материалов за счет увеличения содержания модифицирующей добавки - наночастиц в составе смеси путем использование высокоактивного коллоидного нанодисперсного полисиликата натрия, получаемого по упрощенному способу получения наночастиц, который экономически эффективнее изготовления углеродных нанотрубок.

Технический результат, полученный в процессе решения поставленной задачи, достигается тем, что сырьевая смесь для изготовления ячеистых материалов, включающая: портландцемент марки 500, заполнитель - керамзит дробленый крупностью 0-5 мм или кварцевый песок с Мкр. 1,8-2,0, пенообразователь ПБ-2000, дисперсную арматуру - полимерное волокно строительное микроармирующее - ВСМ диаметром 20-50 мкм и длиной 3-18 мм или базальтовое волокно диаметром 13-17 мкм и длиной 6-12 мм, суперпластификатор Sika ViscoCrete-3, модифицирующую добавку и воду, в качестве модифицирующей добавки содержит коллоидный нанодисперсный полисиликат натрия с силикатным модулем 6,5, при следующем соотношении компонентов, мас.%:

Портландцемент марки 500 40-45

Указанный заполнитель 32

Указанный пенообразователь 2

Указанное волокно 3-10

Указанный суперпластификатор 0,2

Указанный коллоидный

нанодисперсный полисиликат натрия 2-4

Вода остальное

Способ приготовления сырьевой смеси по вышеуказанному составу, заключающийся в том, что в изначально изготовленный коллоидный нанодисперсный полисиликат натрия с силикатным модулем 6,5 путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния в соотношении 1:1,6, перемешивания при 100°С в течение 3,0 ч с выдержкой при указанной температуре не более 0,5 ч, вводят указанные суперпластификатор, портландцемент марки 500 и воду, перемешивают в высокоскоростном смесителе, а затем в полученную таким способом суспензию вводят указанные: заполнитель, пенообразователь ПБ-2000, волокно и перемешивают в течение 5-6 минут до образования гомогенной пеносмеси.

Такой способ получения модифицированной сырьевой смеси позволяет упрочнить структуру ячеистых материалов на микро- и наноуровнях.

Для изготовления предлагаемой сырьевой смеси ячеистого материала с целью качественного сравнения по показателю - свойств, применялись те же составы, их компоненты и методы определения свойств, что и для прототипа, кроме наночастиц - коллоидного нанодисперсного полисиликата натрия.

Коллоидный нанодисперсный полисиликат натрия с силикатным модулем 6,5 получали согласно патенту РФ 2124475, путем введения в 20%-ный водный раствор силиката натрия 16%-го гидрозоля диоксида кремния при их соотношении 1:1,6 и перемешивания при 100оС в течение 3,0 ч с последующей выдержкой не более 0,5 ч.

Коллоидные нанодисперсные полисиликаты представляют переходную область составов от жидких стекол к кремнезолям и классифицируются как наноматериалы.

Структурным элементом полисиликата является кремнекислородный тетраэдр, который является основной полимерной составляющей полисиликатов.

Полимерная форма, представляющая кремнеземные частицы размером от 4 до 5 нм составляет 60% и более от общего содержания кремнезема, что обеспечивает высокие прочностные свойства образующихся гелевых структур.

При введении в состав смеси коллоидного нанодисперсного полисиликата натрия – высокоактивного связующего представляющего кремнеземные наночастицы размером от 4 до 5 нм, которые активно участвуют в процессе гидратации цемента и вступают в реакцию с имеющимися в цементе свободными оксидами кальция, магния и др., образуя при этом их водонерастворимые гидросиликаты, значительно упрочняет микро- и наноструктуру цементного камня, что повышает прочность на сжатие и растяжение, коэффициент конструктивного качества прочности затвердевшего ячеистого материала.

Упрочнению микроструктуры цементного камня также способствует увеличение в составе смеси нанодисперсных частиц полисиликата натрия, которые являются центрами кристаллизации новообразований цементного камня, значительно изменяет микро- и наноструктуру материалов. В результате образуется упрочненная микроструктура цементного камня, что значительно повышает прочностные характеристики затвердевших ячеистых материалов.

Предлагаемый способ получения модифицированной сырьевой смеси позволяет упрочнить структуру ячеистых материалов на микро- и наноуровнях.

Таким образом, применение в составе сырьевой смеси коллоидного нанодисперсного полисиликата натрия способствует, в сравнении с прототипом, увеличению прочности и коэффициента конструктивного качества ячеистых материалов, приготовленных по предлагаемому способу, что и является новым техническим свойством заявляемой сырьевой смеси, приготовленной предлагаемым способом.

Для экспериментальной проверки заявляемой сырьевой смеси, приготовленной предлагаемым способом, изготовили по стандартной методике образцы-балочки размером 10×10×40 см, твердеющие в естественных условиях.

Составы и физико-механические свойства ячеистых материалов, приготовленных по предлагаемому способу, в сравнении с прототипом представлены в таблице.

Анализ представленных в таблице данных показывает, что введение в заявленную сырьевую смесь наночастиц в виде коллоидного нанодисперсного полисиликата натрия, приготовленную по предлагаемому способу, при указанных соотношениях входящих в нее компонентов, согласно предлагаемому составу №1, способствует, увеличению прочности на сжатие по сравнению с прототипом - состав 1 на 12%, прочности на растяжение при изгибе - на 22%, повышению коэффициента конструктивного качества при сжатии - на 32,7%, на растяжение при изгибе - на 44,6%. Прирост прочности заявленной сырьевой смеси (предлагаемый состав №2) по сравнению с прототипом - состав 6 составляет: при сжатии 13%, на растяжение при изгибе 14%, а увеличение коэффициента конструктивного качества при сжатии составляет 21,7%, на растяжение при изгибе – 14,4%.

Литература:

1. Патент РФ №2206544, от 20.06 2003 г.

2. Патент РФ №2422408 от 27.06.2011 г.

Составы Вид, мас.%: Средняя плотность, кг/м3 Прочность,
МПа
Коэффициент конструктивного качества
Связующее вещество Заполнитель Пено-
образо-
ватель
Дисперсная
арматура
Супер-
пластифика-тор
Модифици-рующая добавка Вода При
сжатии
Растя-жение
при
изгибе
При
сжатии
Растя-жение при
изгибе
Прототип состав-1 ПЦ-500;
45
Керамзит дробленный крупностью
0-5 мм;
32
ПБ-2000;
2
Полимерное волокно строительное микроармирующее (ВСМ), диаметром 20-50 мкм длиной 3-18 мм;
3
Sika ViscoCrete-3;
0,2
Многослойные углеродные нанотрубки диаметром 8-40 нм и длиной
2-50 мкм;
0,4
17,4 550 2,6 1,9 4,73 3,45
Предполагаемый состав-1 ПЦ-500;
45
Керамзит дробленный крупностью
0-5 мм;
32
ПБ-2000;
2
Полимерное волокно строительное микроармирующее (ВСМ), диаметром 20-50 мкм длиной 3-18 мм;
3
Sika ViscoCrete-3;
0,2
Коллоидный нанодисперсный полисиликат натрия с силикатным модулем 6,5;
2
15,8 550 2,92 2,32 6,28 4,99
Прототип состав-6 ПЦ 500;
40
Кварцевый песок
Мкр. 1,8-2,0;
32
ПБ-2000;
2
Базальтовое волокно диаметром 13-17 мкм и длиной 6-12 мм;
10
Sika ViscoCrete-3;
0,2
Многослойные углеродные нанотрубки диаметром 8-40 нм и длиной
2-50 мкм;
0,4
15,4 730 4,12 2,1 5,62 2,88
Предполагаемый состав-6 ПЦ 500;
40
Кварцевый песок
Мкр. 1,8-2,0;
32
ПБ-2000;
2
Базальтовое волокно диаметром 13-17 мкм и длиной 6-12 мм;
10
Sika VisсоCrete-3,
0,2
Коллоидный нанодисперсный полисиликат натрия с силикатным модулем 6,5;
4
11,8 730 4,66 2,39 6,84 3,29

Таблица

1. Сырьевая смесь для изготовления ячеистых материалов, включающая портландцемент марки 500, заполнитель – керамзит дробленый крупностью 0-5 мм или кварцевый песок с Мк р. 1,8-2,0, пенообразователь ПБ-2000, полимерное волокно строительное микроармирующее - ВСМ диаметром 20-50 мкм и длиной 3-18 мм или базальтовое волокно диаметром 13-17 мкм и длиной 6-12 мм, суперпластификатор Sika ViscoCrete-3, модифицирующую добавку и воду, отличающаяся тем, в качестве модифицирующей добавки она содержит коллоидный нанодисперсный полисиликат натрия с силикатным модулем 6,5, при следующем соотношении компонентов, мас.%:

Портландцемент марки 500 40-45
Указанный заполнитель 32
Указанный пенообразователь 2
Указанное волокно 3-10
Указанный суперпластификатор 0,2
Указанный коллоидный
нанодисперсный полисиликат натрия 2-4
Вода остальное

2. Способ приготовления сырьевой смеси из состава по п. 1, заключающийся в том, что в предварительно изготовленный коллоидный нанодисперсный полисиликат натрия с силикатным модулем 6,5, полученный путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния в соотношении 1:1,6, перемешивания при 100°С в течение 3,0 ч с выдержкой при указанной температуре не более 0,5 ч, при одновременном перемешивании в высокоскоростном смесителе вводят указанные суперпластификатор, портландцемент марки 500 и воду, до получения однородной суспензии, затем которую перемешивают с указанными: заполнителем, волокном и пенообразователем в лопастной мешалке в течение 5-6 минут до образования гомогенной пеносмеси.



 

Похожие патенты:
Изобретение относится к области строительства, а именно к технологии приготовления фибробетонных смесей и изделий из них, и может быть использовано в технологии производства изделий и конструкций в монолитном строительстве, в сборном строительстве. Способ приготовления фибробетонной смеси включает перемешивание портландцемента, мелкого заполнителя, металлической фибры в течение 5 мин, введение воды затворения, суперпластификатора и дополнительное перемешивание в течение 5 мин.

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении изделий из цирконовых безобжиговых жаростойких бетонов, получаемых без предварительного обжига. Технический результат - повышение термической стойкости и водостойкости бетона.

Изобретение относится к строительным материалам, а именно к ячеистым керамическим изделиям, и может быть использовано при изготовлении элементов ограждающих строительных конструкций. Способ получения строительных газокерамических материалов включает приготовление шихты путем смешивания воды, газообразователя – перекиси водорода и разжижающе-флюсующей добавки – сухого карбоната натрия с аморфной кремнеземистой породой – размолотой до порошкообразного состояния с величиной удельной поверхности частиц 5000-7000 см2/г опокой, загрузку полученной массы в пластиковую форму, установленную на виброплощадке, вспенивание массы при воздействии вибрации в течение 3-5 мин, извлечение пористого сырца из формы, его сушку и обжиг при температуре 900-920°C, при следующем соотношении компонентов, мас.%: указанная опока 64,5-65,3, указанная добавка 0,6-0,8, указанный газообразователь 1,3-2,4, вода – остальное.

Изобретение относится к приготовлению бетонных смесей. Способ включает перемешивание заполнителей, цемента, пластифицирующей добавки и предварительно активированной воды.

Изобретение относится к производству строительных материалов, в частности к бетонной смеси, и может быть использовано для изготовления бетонных конструкций как монолитных, так и сборных, используемых в строительстве. Техническим результатом является разработка простого и эффективного способа получения бетонной смеси с повышенными показателями кубиковой и призменной прочности, модуля упругости, морозостойкости и водонепроницаемости.

Изобретение относится к строительной промышленности, а именно к устройствам автоклавов для производства строительных материалов, и может быть использовано, например, в производстве ячеисто-бетонных изделий по автоклавной технологии. Автоклав включает корпус, образующий внутреннюю среду, блок задания давления Рз(t) в автоклаве, блок измерения давления Равт в автоклаве, вакуумный насос, привод вакуумного насоса с силовым преобразователем частот.

Изобретение относится к получению пенобетона, используемого при строительстве и ремонте жилых, промышленных зданий и сооружений, где требуется непрерывная подача пенобетонной смеси. Способ получения пенобетонной смеси включает перемешивание в заданном соотношении цемента с водой, заполнителем - песком фракций меньше или равной 0,315 мм и/или армирующей добавкой - микрофиброй в смесителе-активаторе со скоростью вращения рабочих органов 200 - 500 оборотов в минуту с нагревом смеси до 30 - 45 градусов Цельсия и гидроактивацией цемента при водоцементном соотношении от 0,28 до 034, приготовление пенообразователя перемешиванием в течение одной минуты в емкости концентрата протеинового пенообразователя с водой в соотношении от 1:50 до 1:25 с последующей аэрацией полученного раствора пенообразователя сжатым воздухом под давлением 0,5 - 0,6 МПа в пеногенераторе до образования пены кратностью 20 - 40, получение пенобетонной смеси на месте применения пенобетона посредством перемешивания в смесителе-поризаторе со скоростью вращения рабочих органов 100 - 500 оборотов в минуту в заданном соотношении указанной активированной цементной смеси и полученного раствора пенообразователя.
Изобретение относится к области производства строительных материалов и может быть использовано для производства материалов для энергетической, строительной, атомной, металлургической и других отраслей для изготовления строительных, огнестойких и огнеупорных изделий и изоляторов. Огнестойкая теплоизоляционная композиция включает магнезиальное вяжущее, наполнитель в виде 5-25 мас.
Изобретение относится к области производства строительных материалов и может быть использовано для производства огнестойких панелей, перегородок, потолков, дверей и других конструктивных элементов, используемых при строительстве гражданских и промышленных зданий, в которых требуется обеспечение пожаробезопасности и безопасности жизнедеятельности человека.

Изобретение относится к области производства строительных материалов и может быть использовано для изготовления изделий из высокопрочного декоративного бетона, обладающих свойствами свечения в темное время суток в течение всего периода эксплуатации. Способ включает совместное перемешивание предварительно приготовленного порошка фотолюминесцентного пигмента и вяжущего, введение мраморной крошки различных фракций, введение воды затворения, с получением водотвердого отношения, не превышающего 0,45.
Изобретение относится к области строительных материалов, а именно к легкому фибробетону на основе отходов промышленности, и может быть использовано для изготовления сборных и монолитных железобетонных изделий. Легкий фибробетон на основе отходов промышленности, приготовленный из смеси, содержащей об.%: портландцемент 37, речной песок с модулем крупности 1,4-1,6 24,75, регенерат – шлаковый песок с модулем крупности 0,6-0,7 7,75, модифицированную в растворе воды и жидкого стекла или в растворе воды, жидкого стекла и гашеной извести фибру на основе текстильных отходов 1,2, комплексный порообразователь, включающий пыль газоочистки металлургического завода, содержащую оксид алюминия, жидкое мыло и воду, 29,3.
Наверх