Газотурбинная установка

Изобретение относится к энергетике. Газотурбинная установка, содержащая соединенные по ходу рабочего тела цикла Брайтона компрессор, регенеративный теплообменник, камеру сгорания и турбину, снабжена блоком охлаждения воздуха, корпус компрессора выполнен двухстенным с полостью между ними, при этом выход блока охлаждения воздуха соединен с входом в полость, вход блока охлаждения воздуха соединен с выходом из полости, образуя контур охлаждения воздуха, а вход в полость расположен со стороны выхода компрессора. Направляющие лопатки статора компрессора выполнены с протоками, соединенными с полостью в корпусе. Контур охлаждения воздуха содержит хладагент, например фреон. Изобретение позволяет повысить эффективность газотурбинной установки благодаря изотермическому сжатию воздуха. 2 з.п. ф-лы, 3 ил.

 

Предлагаемая газотурбинная установка относится к области электроэнергетики и может быть использована на газотурбинных (ГТУ) и парогазовых (ПТУ) установках тепловых электрических станций.

Известен аналог - газотурбинная установка (патент РФ №2224901, F02C 7/10, авторы Степанов А.Ю., Ануров Ю.М., Сударев Б.В., Тараканов А.Б., Ширманов В.М., публикация 27.02.2004), содержащая соединенные по ходу рабочего тела цикла Брайтона компрессор, регенератор, камеру сгорания и турбину. Недостатком устройства-аналога является то, что он обладает низким КПД.

Известен прототип - газотурбинная установка (Цанев СВ. Газотурбинные и парогазовые установки тепловых электростанций / СВ. Цанев, В.Д. Буров, А.Н. Ремезов. - М.: Изд-во МЭИ, 2002. Смотр, стр. 37-38), содержащая соединенные по ходу рабочего тела цикла Брайтона компрессор низкого давления (КНД) и компрессор высокого давления (КВД) с промежуточным охладителем воздуха, регенератор, камеру сгорания и турбину.

Недостатком устройства-прототипа является то, что необходимы, по крайней мере, два компрессора, что усложняет и увеличивает габариты конструкции. Устройство-прототип обладает более высоким КПД, чем устройство-аналог.

Техническая задача заключается в снижении работы на привод компрессора и тем самым в повышении эффективности газотурбинной установки.

Технический эффект, используемый при решении технической задачи, состоит в изотермическом сжатии воздуха. Достигается это тем, что в газотурбинной установке, содержащей соединенные по ходу рабочего тела цикла Брайтона компрессор, регенеративный теплообменник, камеру сгорания, турбину и блок охлаждения воздуха, корпус компрессора выполнен двухстенным с полостью между ними, при этом выход блока охлаждения воздуха соединен со входом в полость, вход блока охлаждения воздуха соединен с выходом из полости, образуя контур охлаждения воздуха, а вход в полость расположен со стороны выхода компрессора. Кроме того, направляющие лопатки статора компрессора выполнены с протоками, соединенными с полостью в корпусе. Кроме того, контур охлаждения воздуха содержит хладагент, например, фреон.

На Фиг. 1 представлена упрощенная схема предлагаемой газотурбинной установки.

На Фиг. 2 представлены TS - диаграммы циклов Брайтона для устройства-аналога, устройства-прототипа и для предлагаемого устройства.

На Фиг. 3 представлены PV - диаграммы циклов Брайтона для устройства-аналога, устройства-прототипа и для предлагаемого устройства.

Согласно Фиг. 1 в газотурбинной установке, содержащей соединенные по ходу рабочего тела цикла Брайтона компрессор 1, регенеративный теплообменник 2, камеру 3 сгорания, турбину 4 и блок 5 охлаждения воздуха, корпус (статор) компрессора выполнен двухстенным (Трухний А.Д. Стационарные паровые турбины. - 2-e изд., перераб. и доп. -М.: Энергоатомиздат, 1990. - 640 с., стр. 89) с полостью 6 между ними, при этом выход блока 5 охлаждения воздуха соединен со входом в полость 6, вход блока 5 охлаждения воздуха соединен с выходом из полости 6, образуя контур охлаждения воздуха, а вход в полость 6 расположен со стороны выхода компрессора 1. Направляющие лопатки 7 (на фиг. 1 приведена лишь одна ступень) статора компрессора выполнены с протоками, соединенными с полостью в корпусе (статоре). А контур охлаждения воздуха содержит хладагент, например, фреон. При этом, например, блок 5 охлаждения воздуха и полость 6 образуют классическую компрессорную холодильную установку, а полость 6 является испарителем, где фреон закипает, охлаждая воздух в компрессоре. (https://cosmo-frost.ru/xolodilniki/kak-rabotaet-xolodilnik-principy-cikly-rezhimy/).

При работе газотурбинной установки давление воздуха из воздухозаборника 8 в компрессоре 1 возрастает до расчетного значения и далее поступает в регенеративный теплообменник 2, а затем в камеру 3 сгорания с подачей топлива 9. Далее газ при высокой температуре поступает в турбину 4. Отработав, далее газ через регенеративный теплообменник 2 сбрасывается в атмосферу 10. Благодаря циркуляции хладагента в контуре охлаждения воздуха при прохождении воздуха через компрессор не происходит повышения его температуры, вызываемой работой сжатия. Турбина 4 вращает электрогенератор 11, отдавая электроэнергию в сеть 12.

Для идеальной газотурбинной установки (т.е. без учета потерь) на Фиг. 2 представлены TS - диаграммы, а на Фиг. 3 представлены PV - диаграммы циклов Брайтона для устройства-аналога, устройства-прототипа и для предлагаемого устройства. При этом площадь abcda пропорциональна полезной работе устройства-аналога, площадь aefmbcda пропорциональна полезной работе устройства-прототипа, а площадь afnmbcda пропорциональна полезной работе предлагаемого устройства. Из сравнения указанных площадей полезной работы очевидно преимущество предлагаемого устройства, с полостью 6 между ними, при этом выход блока 5 охлаждения воздуха соединен со входом в полость 6, вход блока 5 охлаждения воздуха соединен с выходом из полости 6, образуя контур охлаждения воздуха, а вход в полость 6 расположен со стороны выхода компрессора 1. Направляющие лопатки 7 (на Фиг. 1 приведена лишь одна ступень) статора компрессора выполнены с протоками, соединенными с полостью в корпусе (статоре). А контур охлаждения воздуха содержит хладагент, например, фреон. При этом, например, блока 5 охлаждения воздух и полость 6 образуют классическую компрессорную холодильную установку, а полость 6 является испарителем, где фреон закипает, охлаждая воздух в компрессоре (https://cosmo-frost.ru/xolodilniki/kak-rabotaet-xolodilnik-principy-cikly-rezhimy/).

При работе газотурбинной установки давление воздуха из воздухозаборника 8 в компрессоре 1 возрастает до расчетного значения и далее поступает в регенеративный теплообменник 2, а затем в камеру 3 сгорания с подачей топлива 9. Далее газ при высокой температуре поступает в турбину 4. Отработав, далее газ через регенеративный теплообменник 2 сбрасывается в атмосферу 10. Благодаря циркуляции хладагента в контуре охлаждения воздуха при прохождении воздуха через компрессор не происходит повышения его температуры, вызываемого работой сжатия. Турбина 4 вращает электрогенератор 11, отдавая электроэнергию с сеть 12.

Для идеальной газотурбинной установки (т.е. без учета потерь) на Фиг. 2 представлены TS - диаграммы, а на Фиг. 3 представлены PV - диаграммы циклов Брайтона для устройства-аналога, устройства-прототипа и для предлагаемого устройства. При этом площадь abcda пропорциональна полезной работе устройства-аналога, площадь aefmbcda пропорциональна полезной работе устройства-прототипа, а площадь afnmbcda пропорциональна полезной работе предлагаемого устройства. Из сравнения указанных площадей полезной работы очевидно преимущество предлагаемого устройства.

Изобретение позволяет реализовать изотермическое сжатие воздуха (газа), что требует минимальной работы на привод компрессора, и как следствие - уменьшение габаритов компрессора. Максимальный КПД ГТУ достигается регенерацией теплоты с использованием охлаждения воздуха в компрессоре.

Литература

1. Патент РФ №2224901, F02C 7/10, авторы Степанов А.Ю., Ануров Ю.М., Сударев Б.В., Тараканов А.Б., Ширманов В.М., публикация 27.02.2004.

2. Цанев С.В. «Газотурбинные и парогазовые установки тепловых электростанций (С.В. Цанев, В.Д. Буров, А.Н. Ремезов. - М.: Изд-во МЭИ, 2002, стр. 37-38).

1. Газотурбинная установка, содержащая соединенные по ходу рабочего тела цикла Брайтона компрессор, регенеративный теплообменник, камеру сгорания, турбину и блок охлаждения воздуха, отличающаяся тем, что корпус компрессора выполнен двухстенным с полостью между ними, при этом выход блока охлаждения воздуха соединен с входом в полость, вход блока охлаждения воздуха соединен с выходом из полости, образуя контур охлаждения воздуха, а вход в полость расположен со стороны выхода компрессора.

2. Газотурбинная установка по п. 1, отличающаяся тем, что направляющие лопатки статора компрессора выполнены с протоками, соединенными с полостью в статоре.

3. Газотурбинная установка по п. 1, отличающаяся тем, что контур охлаждения воздуха содержит хладагент, например фреон.



 

Похожие патенты:

Изобретение относится к насосам для передачи технологической текучей среды. Насос (1) содержит корпус (3), статорную часть (11), неподвижно установленную в корпусе (3), по меньшей мере одно рабочее колесо (9), размещенное с возможностью вращения в корпусе (3).

Изобретение относится к области авиадвигателестроения, а именно к устройствам управления угловым положением поворотных направляющих лопаток компрессора газотурбинного двигателя (ГТД). Указанный технический результат достигается тем, что в устройстве управления направляющими аппаратами компрессора газотурбинного двигателя, содержащем цилиндрическую втулку, по меньшей мере на участке внутренней поверхности которой выполнен слой графита, установленную и жестко закрепленную в промежуточном корпусе, в которой установлена ось, на которой жестко закреплены два рычага, один из которых соединен со штоком силового цилиндра, а второй - с приводом направляющих аппаратов, при этом на участке наружной поверхности оси, расположенном непосредственно в зоне контакта втулки и оси выполнено, по меньшей мере, одно отверстие и/или канавка, в котором установлен, по меньшей мере, один графитовый элемент, подпружиненный к внутренней поверхности втулки с помощью пружины.

Изобретение относится к машиностроению и касается конструкции подшипниковых опор для класса герметичных насосов, в частности для подкласса насосов с магнитной муфтой. Техническая задача, на решение которой направлено предлагаемое решение, заключается в создании надежной и простой в изготовлении конструкции подшипниковых опор с мокрым ротором, повышении КПД насоса с магнитной муфтой, повышении химической стойкости опор и их защиты от абразивных включений с применением серийно выпускаемых подшипников.

Изобретение предназначено для использования в области энергетики. Предложена турбомашина 1, содержащая корпусную конструкцию и вал, поддерживаемый в ней с возможностью вращения.

Изобретение относится к области машиностроения и может быть использовано при технологических операциях сборки магнитных подвесов центробежных нагнетателей, их ремонте и иных работах по регулировке положения подвижных элементов вращающихся механизмов относительно неподвижных. Элементы для регулировки положения радиальных блоков датчиков размещаются за пределами корпуса опор.

Изобретение относится к интегрированному мотору-компрессору. Уравновешивающий и уплотняющий поршень для интегрированного мотора-компрессора содержит уравновешивающий поршень (50), выполненный с возможностью установки на валу (38) мотора-компрессора для компенсации перепада давлений, прилагаемых к колесам (34, 35, 36, 37) секции сжатия мотора-компрессора, между давлением всасывания и давлением нагнетания, уплотнительное устройство (51), окружающее уравновешивающий поршень и выполненное с возможностью установки на корпусе (31) мотора-компрессора (30) для обеспечения герметичности секции сжатия.

Объектом изобретения является система для приведения во вращение ротора газотурбинного двигателя относительно кожуха статора, при этом ротор содержит кольцевой ряд лопаток. Эта приводная система содержит: держатель (100), первый конец (101а) которого выполнен с возможностью удержания передней кромки первой лопатки кольцевого ряда и второй конец (101b) которого выполнен с возможностью удержания задней кромки первой лопатки; электрический двигатель (110), содержащий вал и корпус (111), закрепленный на держателе (100); и колесо (120), связанное с валом двигателя (110) и имеющее поверхность (121) качения, при этом колесо расположено таким образом, чтобы поверхность (121) качения могла входить в контакт с кольцевой стенкой кожуха статора, когда держатель (100) установлен на первой лопатке.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции регулируемого входного направляющего аппарата (ВНА) компрессора газотурбинного двигателя (ГТД). Регулируемый входной направляющий аппарат компрессора газотурбинного двигателя содержит наружный корпус 1 и внутреннее кольцо 2 с установленными между ними направляющими лопатками, выполненными в виде неподвижных стоек 3, закрепленных в наружном корпусе 1 и внутреннем кольце 2, и поворотных закрылков 4 с верхними 5 и нижними 6 хвостовиками, установленными в подшипники 7 и 8 в соответствующих ответных отверстиях наружного корпуса 1 и внутреннего кольца 2.

Группа изобретений касается способа эксплуатации циркуляционного насоса, в частности, в системе отопления с приводом насоса с переменной скоростью. В способе система управления насосом модифицирует текущую рабочую точку насоса так, чтобы снизить шумовыделение насоса.

Настоящее изобретение относится к насосному и измельчительному устройству (1), включающему: по меньшей мере, один погружной насос (3), размещенный в резервуаре (2), являющемся подходящим для приема поступающего материала (5), и привод (4), предназначенный для приведения в действие погружного насоса (3).

Группа изобретений относится к вертикальным центробежным насосам. Насос содержит ротор с валом и не менее чем одно рабочее колесо закрытого типа, корпус всасывания, проточную часть, корпус нагнетания, подшипники, уплотнения, шнек, установленный перед первым рабочим колесом, направляющий аппарат, отводящий жидкость от рабочего колеса и быстроразъемные соединения.
Наверх