Способ получения водорода из природного газа

Изобретение может быть использовано в производстве водорода в энергетической, химической, нефтегазовой промышленности. Для получения водорода природный газ смешивают с водородом, нагревают в первом теплообменном аппарате, направляют в реактор-десульфуризатор. После этого природный газ разделяют на два потока. Один поток направляют в горелку, а другой смешивают с паром, после чего парогазовую смесь нагревают во втором и третьем теплообменных аппаратах и подвергают паровой конверсии углеводородов в первом реакторе. Конвертированный газ подают в парогенератор и проводят каталитическую конверсию оксида углерода во втором реакторе. Охлаждают полученный синтез-газ в первом и четвертом теплообменных аппаратах. Из синтез-газа выделяют водород, водяной конденсат, который направляют в систему водоподготовки, из которой отбирают воду и нагревают ее в четвертом и пятом теплообменных аппаратах, затем подают на испарение в парогенератор, и хвостовой газ, который нагревают в шестом теплообменном аппарате и подают в горелку совместно с природным газом и воздухом, который подогревают в седьмом теплообменном аппарате. Продукты сгорания охлаждают в третьем, пятом теплообменных аппаратах, первом реакторе, а также втором, седьмом и шестом теплообменных аппаратах, а затем направляют в систему нейтрализации дымовых газов, по мере выхода из которой осуществляют выброс продуктов сгорания в атмосферу и подачу водяного конденсата в систему водоподготовки. При этом организуют охлаждение синтез-газа в системе выделения водорода и продуктов сгорания в системе нейтрализации дымовых газов при помощи хладагента, который последовательно подают в систему выделения водорода, затем в систему нейтрализации дымовых газов, далее в систему сброса тепла хладагента, после чего направляют обратно в систему выделения водорода. Изобретение позволяет снизить эксплуатационные затраты на нагрев и охлаждение рабочих сред, повысить экологичность и энергетическую эффективность процесса. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к способам получения водорода из природного газа и может быть использовано с целью производства водорода стационарными или мобильными энергетическими установками в энергетической, химической, нефтегазовой и других отраслях промышленности.

Известна водородная установка, включающая узел сероочистки, конвертер с горелкой, паровой котел-утилизатор, конвертер оксида углерода, охладитель-осушитель, узел водоподготовки, узел выделения водорода, охладитель синтез-газа, в которой исходное сырье подают в узел сероочистки, после чего часть сырья подают в качестве первого компонента топлива в горелку, а оставшуюся часть смешивают с водяным паром, подаваемым из парового котла-утилизатора и конвертера оксида углерода, и пропускают через охладитель, направляют в конвертор с горелкой, в которую подают воздух, а из узла выделения водорода подают продувочный газ, дымовой газ из горелки выводят по соответствующей линии, при этом полученный синтез-газ направляют через котел-утилизатор в конвертер оксида углерода, причем часть синтез-газа подают в охладитель, снижая выработку пара в котле-утилизаторе до необходимой, водородсодержащий газ из конвертера оксида углерода через охладитель-осушитель подают в узел выделения водорода, из которого выводят водород, образовавшийся конденсат и воду направляют в узел водоподготовки, из которого подготовленную воду подают в конвертор оксида углерода и котел-утилизатор (Патент RU №2614668, МПК C01B 3/02, C01B 3/12, C01B 3/34, 2017).

Основными недостатками известной установки и способа получения водорода при ее использовании являются отсутствие предварительного подогрева воздуха, подаваемого на горение; высокая тепловая нагрузка в охладителе синтез-газа, обусловленная применением синтез-газа первой ступени для предварительного подогрева парогазовой смеси; низкий уровень полезного использования теплоты и отсутствие системы нейтрализации уходящих дымовых газов; недостаточность избытка содержания пара в исходном сырье для проведения следующих друг за другом стадий процесса - конверсии углеводородов и конверсии оксида углерода.

Наиболее близким техническим решением по совокупности признаков к заявляемому объекту и принятому за прототип относится способ получения водорода из газообразного углеводородного сырья - природного газа, попутного нефтяного газа, а также углеводородного газа, получаемого испарением жидкого топлива, включающий очистку подводимого газа от соединений серы, смешение очищенного газа с водяным паром, каталитическую паровую конверсию углеводородов с подводом высокотемпературного тепла и получением конвертированного газа, каталитическую паровую конверсию оксида углерода с отводом низкотемпературного тепла испарительным охлаждением и выделение товарного водорода из водородсодержащего газа, при этом газообразное углеводородное сырье подводят к узлу сероочистки с давлением не ниже 0,5 МПа и после очистки от соединений серы разделяют на два потока, при этом на смешение с водяным паром подают один из потоков, который затем подвергают паровой каталитической конверсии при температуре 800-1050°С в реакторе радиально-спирального типа, полученный конвертированный газ подают в качестве греющей среды в паровой котел-утилизатор для частичного охлаждения, каталитическую паровую конверсию оксида углерода проводят в реакторе радиально-спирального типа при температуре 190-230°С, затем полученный водородсодержащий газ дополнительно охлаждают до температуры 20-40°С внешним хладоносителем и отделяют от влаги в охладителе-осушителе газа, после чего подают в узел разделения водородсодержащего газа, в котором выделяют конечный продукт - товарный водород, а продувочный газ отводят из узла разделения водородсодержащего газа и смешивают со вторым потоком очищенного от серы углеводородного газа, полученную смесь подают в качестве топливного газа на горелку каталитического реактора конверсии углеводородов, причем перед подачей на горелку эту смесь и необходимый для горения воздух нагревают в блоке рекуперации тепла за счет частичного охлаждения дымовых газов, выходящих из каталитического реактора конверсии углеводородов, после чего дымовые газы для отделения влаги дополнительно охлаждают внешним хладоносителем в охладителе-осушителе дымовых газов и выводят из установки, а конденсат, выделяемый в охладителях-осушителях водородсодержащего газа и дымовых газов, подвергают очистке в узле водоподготовки и направляют для производства пара, необходимого для проведения паровой конверсии углеводородов, в паровой котел-утилизатор (Патент RU №2394754, МПК С01В 3/12, С01В 3/34, 2010 -прототип).

Недостатками известного способа получения водорода из углеводородного сырья являются отсутствие реализации предварительного подогрева исходного газообразного сырья; низкая энергетическая эффективность, обусловленная осуществлением генерации пара в одну ступень, реализующейся при избыточной подаче воды в котел-утилизатор, и последующим выбросом избытка пара в атмосферу, либо его использование для других возможных технологических нужд (например, с целью применения в турбогенераторах); недостаточность избытка содержания пара в исходном сырье для проведения следующих друг за другом стадий процесса - конверсии углеводородов и конверсии оксида углерода; использование охладителей-осушителей для дополнительного охлаждения потоков, реализующегося при подаче внешнего хладоносителя (например, воздуха или воды), приводящее в конечном итоге к дополнительным эксплуатационным затратам; отсутствие системы нейтрализации уходящих дымовых газов.

Задача, на решение которой направлено заявленное изобретение, заключается в создании способа получения водорода из природного газа, в котором отсутствуют указанные недостатки, и применение которого позволит минимизировать дополнительные эксплуатационные затраты на охлаждение и нагрев рабочих сред, повысить экологичность и энергетическую эффективность технологического процесса путем интенсификации полезного использования теплоты потоков задействованных веществ и нейтрализации дымовых газов, выбрасываемых в атмосферу.

Решение поставленной задачи достигается тем, что в предложенном способе получения водорода из природного газа, включающем очистку подводимого природного газа от соединений серы, разделение очищенного природного газа на два потока, подачу одного из потоков на горелку, смешение второго потока с водяным паром, каталитическую паровую конверсию смешанного потока с подводом высокотемпературного тепла и получением конвертированного газа, каталитическую паровую конверсию оксида углерода с отводом низкотемпературного тепла испарительным охлаждением и выделение товарного водорода из водородсодержащего газа, согласно изобретению, природный газ смешивают с необходимым для десульфуризации водородом, полученную смесь предварительно нагревают в первом теплообменном аппарате и направляют в реактор-десульфуризатор, где осуществляют его обессеривание, далее десульфуризированный природный газ разделяют на два потока, один из которых направляют в горелку, а другой смешивают с водяным паром, после чего полученную парогазовую смесь последовательно нагревают во втором и третьем теплообменных аппаратах и подвергают паровой каталитической конверсии углеводородов в первом реакторе, затем полученный конвертированный газ частично охлаждают путем подачи в качестве греющей среды в парогенератор и направляют во второй реактор, где проводят каталитическую конверсию оксида углерода, после чего охлаждают полученный в результате конверсии синтез-газ путем его последовательной подачи в качестве греющего теплоносителя в первый и четвертый теплообменные аппараты, после прохождения которых синтез-газ направляют в систему выделения водорода, где выделяют товарный водород, который направляют потребителю, водяной конденсат, который подвергают очистке в системе водоподготовки, из которой отбирают подготовленную воду и последовательно ее нагревают в четвертом и пятом теплообменных аппаратах, затем подают в качестве нагреваемой среды в парогенератор для производства пара, необходимого для проведения паровой конверсии, и хвостовой газ, который нагревают в шестом теплообменном аппарате и подают в горелку совместно с десульфуризированным природным газом и воздухом, который предварительно подогревают в седьмом теплообменном аппарате, при этом выделившиеся продукты сгорания охлаждают путем последовательной подачи в качестве греющей среды в третий, пятый теплообменные аппараты, первый реактор, а также второй, седьмой и шестой теплообменные аппараты, а затем направляют в систему нейтрализации дымовых газов, по мере выхода из которой осуществляют выброс продуктов сгорания в атмосферу и подачу выделившегося водяного конденсата в систему водоподготовки, при этом организуют дополнительное охлаждение синтез-газа в системе выделения водорода и продуктов сгорания в системе нейтрализации дымовых газов при помощи хладагента, который последовательно подают в систему выделения водорода, затем в систему нейтрализации дымовых газов, далее в систему сброса тепла хладагента, после чего направляют обратно в систему выделения водорода.

В варианте исполнения предложенного способа возможный перелив парогенератора регулируют посредством сброса излишка воды в систему водоподготовки.

В варианте исполнения предложенного способа горелку выполняют с возможностью сжигания природного газа, содержащего сернистые соединения, при этом в горелку подают недесульфуризированный природный газ, хвостовой газ и воздух.

Принципиальная схема реализации предложенного способа получения водорода из природного газа представлена на фиг. 1.

Принципиальная схема содержит следующие элементы: 1 - природный газ; 2 - смеситель газовый; 3 - водород, необходимый для десульфуризации; 4 - смесь природного газа и водорода; 5 - первый теплообменный аппарат; 6 - реактор-десульфуризатор; 7 - десульфуризированный природный газ; 8 - газовый смеситель; 9 - парогазовая смесь; 10 - второй теплообменный аппарат; 11 - третий теплообменный аппарат; 12 - первый реактор (реактор паровой каталитической конверсии углеводородов); 13 - конвертированный газ; 14 - парогенератор; 15 - второй реактор (реактор каталитической конверсии оксида углерода); 16 - синтез-газ; 17 - четвертый теплообменный аппарат; 18 - система выделения водорода; 19 - хладагент; 20 - товарный водород; 21 - водяной конденсат из системы выделения водорода; 22 - подготовленная вода; 23 - пятый теплообменный аппарат; 24 - хвостовой газ; 25 - шестой теплообменный аппарат; 26 - воздух; 27 - седьмой теплообменный аппарат; 28 - горелка; 29 - продукты сгорания; 30 - система нейтрализации дымовых газов; 31 - водяной пар; 32 - водяной конденсат из системы нейтрализации дымовых газов; 33 - излишек воды парогенератора; 34 - система сброса тепла хладагента; 35 - недесульфуризированный природный газ.

Предложенный способ получения водорода из природного газа реализуется следующим образом.

Природный газ 1 подают в смеситель газовый 2, где смешивают с необходимым для десульфуризации водородом 3, частично отобранным из системы 18 выделения водорода. Смесь 4 природного газа и водорода направляют в первый теплообменный аппарат 5, где ее предварительно нагревают, предпочтительно, до температуры 390°С, а затем подают в реактор-десульфуризатор 6 на обессеривание при температуре 290-420°С. Из реактора-десульфуризатора 6 десульфуризированный природный газ 7 разделяют на два потока, один из которых направляют в горелку 28, а другой смешивают с подаваемым из парогенератора 14 водяным паром 31 в газовом смесителе 8, после чего полученную парогазовую смесь 9 последовательно нагревают за счет тепла продуктов сгорания во втором 10 и третьем 11 теплообменных аппаратах. Затем нагретую, предпочтительно, до температуры 1100°С парогазовую смесь 9 направляют в первый реактор 12, где ее подвергают паровой каталитической конверсии углеводородов при температуре 750-1100°С. Реакция паровой конверсии является эндотермической и протекает с поглощением теплоты (1):

Далее продукт конверсии - конвертированный газ 13 частично охлаждают, предпочтительно, до температуры 350°С путем подачи в качестве греющей среды в парогенератор 14 и затем направляют во второй реактор 15, где осуществляют каталитическую конверсию оксида углерода при температуре 300-500°С. В реакторе 15 конверсии оксида углерода большую часть оксида углерода подвергают реакции с избыточным количеством пара, присутствующем в потоке конвертированного газа 13. Реакция является экзотермической и протекает с выделением тепла (2):

Полученный в результате каталитической конверсии оксида углерода синтез-газ 16 охлаждают путем последовательного применения в качестве греющего теплоносителя, соответственно, в первом 5 и четвертом 17 теплообменных аппаратах. Из четвертого теплообменного аппарата 17 синтез-газ подают в систему 18 выделения водорода, в которой производят окончательные очистку от примесей углеводородов, оксида углерода и охлаждение синтез-газа 16, и вместе с тем выделяют конечный продукт - товарный водород высокой степени чистоты, который направляют потребителю по линии 20. При этом в данном процессе также выделяют водяной конденсат 21 и хвостовой газ 24. Водяной конденсат 21 подают в систему водоподготовки, где осуществляют его очистку и смешивают с подготовленной водой 22, которую отбирают из системы водоподготовки и последовательно подогревают, соответственно, в четвертом 17 и пятом 23 теплообменных аппаратах, а затем направляют в качестве нагреваемой среды в парогенератор 14 и генерируют необходимый для проведения паровой каталитической конверсии водяной пар 31, который подают в газовый смеситель 8. Хвостовой газ 24 из системы выделения водорода 18 предварительно нагревают в шестом теплообменном аппарате 25 и подают в горелку 28 совместно с десульфуризированным природным газом 7 и необходимым для организации процесса горения воздухом 26, который предварительно подогревают в седьмом теплообменном аппарате 27. Процесс горения десульфуризированного природного газа основан на реакции (3), а хвостовых газов - на реакциях (3-5):

В результате процесса горения выделяют продукты сгорания 29 высокой температуры, которые последовательно используют для нагрева рабочих сред, соответственно, в пятом 23 и третьем 11 теплообменных аппаратах, а затем подают в первый реактор 12 с целью организации паровой каталитической конверсии углеводородов. Из первого реактора 12 продукты сгорания 29 последовательно направляют в качестве греющего теплоносителя, соответственно, во второй 10, седьмой 27 и шестой 25 теплообменные аппараты. Охлажденные продукты сгорания 29 из шестого теплообменного аппарата 25 подают в систему 30 нейтрализации дымовых газов, по мере выхода из которой осуществляют выброс продуктов сгорания 29 в атмосферу и подачу выделившегося водяного конденсата 32 в систему водоподготовки. При этом организуют дополнительное охлаждение синтез-газа 16 в системе 18 выделения водорода и продуктов сгорания 29 в системе 30 нейтрализации дымовых газов при помощи хладагента 19, который последовательно подают в систему 18 выделения водорода, затем в систему 30 нейтрализации дымовых газов, далее в систему 34 сброса тепла хладагента, из которой хладагент 19 направляют обратно в систему 18 выделения водорода. Теплоту от системы 34 сброса тепла хладагента используют для любых возможных технологических нужд, например, с целью поддержания рабочей температуры установки или отдельных систем.

В варианте выполнения предложенного способа возможный перелив парогенератора 14 регулируют посредством сброса излишка воды 33 в систему водоподготовки.

В варианте исполнения предложенного способа горелку 28 выполняют с возможностью сжигания недесульфуризированного природного газа 35, при этом в горелку подают недесульфуризированный природный газ 35, хвостовой газ 24 и воздух 26.

Таким образом, использование предложенного способа получения водорода из природного газа позволит значительно снизить дополнительные эксплуатационные затраты на нагрев и охлаждение рабочих сред, повысить экологичность и энергетическую эффективность технологического процесса путем интенсификации полезного использования теплоты потоков задействованных веществ и нейтрализации дымовых газов, выбрасываемых в атмосферу.

1. Способ получения водорода из природного газа, включающий очистку природного газа от соединений серы, разделение очищенного природного газа на два потока, подачу одного из потоков на горелку, смешение второго потока с водяным паром, каталитическую паровую конверсию смешанного потока с подводом высокотемпературного тепла и получением конвертированного газа, каталитическую паровую конверсию оксида углерода с отводом низкотемпературного тепла испарительным охлаждением и выделение товарного водорода из водородсодержащего газа, отличающийся тем, что природный газ смешивают с необходимым для десульфуризации водородом, полученную смесь предварительно нагревают в первом теплообменном аппарате и направляют в реактор-десульфуризатор, где осуществляют его обессеривание, далее десульфуризированный природный газ разделяют на два потока, один из которых направляют в горелку, а другой смешивают с водяным паром, после чего полученную парогазовую смесь последовательно нагревают во втором и третьем теплообменных аппаратах и подвергают паровой каталитической конверсии углеводородов в первом реакторе, затем полученный конвертированный газ частично охлаждают путем подачи в качестве греющей среды в парогенератор и направляют во второй реактор, где проводят каталитическую конверсию оксида углерода, после чего охлаждают полученный в результате конверсии синтез-газ путем его последовательной подачи в качестве греющего теплоносителя в первый и четвертый теплообменные аппараты, после прохождения которых синтез-газ направляют в систему выделения водорода, где выделяют товарный водород, который направляют потребителю, водяной конденсат, который подвергают очистке в системе водоподготовки, из которой отбирают подготовленную воду и последовательно ее нагревают в четвертом и пятом теплообменных аппаратах, затем подают в качестве нагреваемой среды в парогенератор для производства пара, необходимого для проведения паровой конверсии, и хвостовой газ, который нагревают в шестом теплообменном аппарате и подают в горелку совместно с десульфуризированным природным газом и воздухом, который предварительно подогревают в седьмом теплообменном аппарате, при этом выделившиеся продукты сгорания охлаждают путем последовательной подачи в качестве греющей среды в третий, пятый теплообменные аппараты, первый реактор, а также второй, седьмой и шестой теплообменные аппараты, а затем направляют в систему нейтрализации дымовых газов, по мере выхода из которой осуществляют выброс продуктов сгорания в атмосферу и подачу выделившегося водяного конденсата в систему водоподготовки, при этом организуют дополнительное охлаждение синтез-газа в системе выделения водорода и продуктов сгорания в системе нейтрализации дымовых газов при помощи хладагента, который последовательно подают в систему выделения водорода, затем в систему нейтрализации дымовых газов, далее в систему сброса тепла хладагента, после чего направляют обратно в систему выделения водорода.

2. Способ получения водорода из природного газа по п. 1, отличающийся тем, что возможный перелив парогенератора регулируют посредством сброса излишка воды в систему водоподготовки.

3. Способ получения водорода из природного газа по п. 1, отличающийся тем, что горелку выполняют с возможностью сжигания природного газа, содержащего сернистые соединения, при этом в горелку подают недесульфуризированный природный газ, хвостовой газ и воздух.



 

Похожие патенты:

Изобретение относится к области химических технологий. Изобретение относится к способу получения синтез-газа методом паровой конверсии метана.

Изобретение относится к процессам разделения стабильных изотопов физико-химическими методами. Для получения высококонцентрированного изотопа 13С низкотемпературной ректификацией оксида углерода СО в качестве исходного сырья используют диоксид углерода СО2 с природным изотопным составом, который подают в качестве потока питания в противоточную массообменную колонну между ее концентрирующей и исчерпывающей частями.

Изобретение относится к области переработки отходов полиэтилентерефталата (ПЭТФ) в углеродный материал. Предложен способ переработки отходов ПЭТФ, включающий предварительное растворение отхода полиэтилентерефталата в диметилсульфоксиде при температуре 160-180°С, добавление гидроксида щелочного металла и щелочной гидролиз растворенного отхода ПЭТФ при температуре 130-150°С и атмосферном давлении с получением соли терефталевой кислоты с последующим ее пиролизом под действием ИК-излучения в инертной атмосфере при температуре 800-900°С (два варианта, использующих разные гидроксиды щелочного металла).

Изобретение относится к области органической химии гетероциклических соединений, в частности к синтону для получения лекарственных веществ, ингибиторов коррозии, красителей, инсектицидов. Раскрывается способ получения 1,9-3’,4’-дигидро-2H-бензо[b][1’,4’]оксазино-1,9-дигидро-(С60-Ih)[5,6]фуллерена формулы (1), отличающийся тем, что фуллерен С60 взаимодействует с 2-аминофенолом на воздухе в присутствии твердого LiOH и Pb(CH3COO)4 при мольном соотношении С60:2-аминофенол:LiOH:Pb(CH3COO)4=1:10:10:2.4, при температуре 40°С в среде толуол:Et2O=5:1 (объемное соотношение) в течение 1 часа и дальнейшем перемешивании при комнатной температуре на магнитной мешалке в течение 23 часов.

Изобретение относится к способу паровой конверсии метана или метансодержащих углеводородов, включающему получение исходной углеводородно-паровой смеси и ее контактирование при высокой температуре с каталитическим материалом, содержащим мелкогранулированный природный серпентинит или иной материал из группы силикатных ультраосновных пород, при пропускании указанной смеси через слой такого материала.

Изобретение относится к способу переработки германийсодержащего сырья, в качестве которого используют германийсодержащий уголь или лигнит. Способ получения германиевого концентрата из ископаемых углей включает термообработку угля при подаче воздуха снизу и получении зольного уноса, содержащего синтез-газ и шлак, при этом термообработку угля проводят в аппарате циркулирующего кипящего слоя при температуре 800-900°С, скорость движения зоны горения поддерживают путем регулирования расхода воздуха при коэффициенте избытка воздуха α=0,2-0,3, a синтез-газ и мелкие частицы шлака на выходе направляют в тканевый фильтр для разделения на германиевый концентрат и синтез-газ.

Изобретение относится к области органической химии гетероциклических соединений, в частности, к разработке прекурсора противовирусных и гепатототоксических препаратов. Раскрывается 1,9-(2'-Гидроксиметил-1',4'-диоксано)-1,9-дигидро-(С60-Ih)[5,6]фуллерен формулы (1).

Изобретение относится к способу получения синтетических углеводородов, при котором полученный при газификации угля синтез-газ, содержащий Н2 и СО, обессеривают и затем подают в реактор синтеза Фишера-Тропша, где посредством каталитических реакций образуются углеводороды, при этом обеспечивают молярное соотношение между Н2 и СО 1,9-2,0:1, а полученные углеводороды отводят потребителю.

Изобретение относится способу получения активированного угля. Предложен способ получения активированного угля из отходов зерноперерабатывающей и лесной промышленности, который включает следующие стадии: экструдирование отходов до порошка дисперсностью 1-3 мм, гранулирование отходов для получения пеллет, сушку при температуре 120-180°С, перемещение пеллет горизонтальным шнеком в нижнюю часть печи карбонизации для нагрева до температуры 300-850°С без доступа кислорода, далее смесь газа и кокса подают в циклон, где разделяют ее на кокс и пиролизный газ, кокс горизонтальным шнеком направляют в нижнюю часть печи термогазовой активации, где его нагревают до 700-900°С за счет непосредственного контакта внутренних стенок печи активации и вертикальных пластин внутри ее корпуса, с получением активированного угля, который охлаждают до 30-40°С и направляют на фасовку.

Изобретение относится к способу получения ацетилена и синтез-газа посредством частичного окисления углеводородов кислородом. При этом первый исходный поток, содержащий один или несколько углеводородов, и второй исходный поток, содержащий кислород, предварительно нагревают отдельно друг от друга, смешивают в соотношении массовых потоков второго исходного потока к первому исходному потоку, соответствующем кислородному числу λ, меньше или равному 0,31, причем под кислородным числом λ понимают соотношение фактически присутствующего во втором исходном потоке количества кислорода к стехиометрически необходимому количеству кислорода, которое необходимо для полного сгорания одного или нескольких углеводородов, содержащихся в первом исходном потоке.

Изобретение может быть использовано для получения газообразного чистого водорода в установках, связанных с системами транспортировки газа. Способ получения водорода из природного газа включает нагрев лент из углеродной фольги в герметичной водоохлаждаемой камере прямым пропусканием электрического тока и термическое разложение природного газа в зазоре между двумя параллельными углеродными лентами. Природный газ предварительно проходит осушку от паров воды. Между лентами из углеродной фольги создают разность электрических потенциалов. Выделенный из реакционной камеры циклическим образом водород через компрессор подают в сосуд высокого давления. В результате пиролиза природного газа также образуется пироуглерод. Изобретение позволяет исключить выделение диоксида углерода при получении чистого водорода из природного газа. 2 ил., 1 пр.
Наверх