Способ получения бактерицидного материала на основе органомодифицированной бентонитовой глины



Владельцы патента RU 2787448:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Хакасский государственный университет им. Н. Ф. Катанова" (RU)

Изобретение относится к области медицины и фармацевтики, а именно к способу получения бактерицидного материала на основе органомодифицированной бентонитовой глины. Способ получения бактерицидного материала на основе органомодифицированной бентонитовой глины: карьерная бентонитовая глина обрабатывается карбонатом натрия при комнатной температуре в следующем соотношении компонентов, мас.%: бентонит : карбонат натрия – 45-50:0,5-1,0, остальное – вода; полученный порошок глины после высушивания при температуре 110°С до постоянной массы смешивается с кристаллической 2-амино-5-гуанидинпентановой кислотой (аргинин) в следующем соотношении компонентов, мас.%: бентонит: аргинин – 45-50: 3,0-5,0, остальное – вода; выдерживается при комнатной температуре 24 часа, высушивается до постоянной массы при температуре 110°С; полученный порошок глины заливается водным раствором нитрата серебра с концентрацией 0,08-0,09 мас.% в следующем соотношении компонентов, мас.%: бентонит : раствор нитрата серебра – 2-5 : 95-98; через 24 часа глина отфильтровывается, высушивается при температуре 110°С до постоянной массы. Вышеуказанное изобретение позволяет получить материал, обладающий выраженными бактерицидными свойствами, снизить количество затрачиваемого дорогостоящего реагента нитрата серебра без сложного оборудования и больших энергозатрат. 3 табл.

 

Изобретение относится к способу получения материала с бактерицидными свойствами на основе органомодифицированной бентонитовой глины с интеркалированными частицами серебра. Способ заключается в активации природного бентонита ионами натрия путем обработки его карбонатом натрия с последующей модификацией органическим реагентом - 2-амино-5-гуанидинпентановой кислотой (аргинин) и интеркаляцией частиц серебра из водного раствора азотнокислого серебра. Получаемый материал может быть использован в медицине и в ветеринарии в качестве бактерицидного препарата наружного применения для лечения кожных заболеваний, в препаратах для других отраслей техники, в частности для обработки тканевых, полимерных, конструкционных изделий, в том числе медицинского назначения.

Уровень техники

В медицинской практике и ветеринарии широко известно антимикробное действие серебра. Известные фармацевтические бактерицидные препараты на основе серебра в виде водных дисперсий имеют ряд недостатков - низкая агрегативная устойчивость системы и кратковременность ее действия. В качестве новых антибактериальных агентов представляют интерес бактерицидные композитные материалы с серебром на твердых поверхностях.

Известен способ получения антибактериального материала на основе активированного ионами натрия бентонита (патент RU 233067 от 22.11.2006, патент RU 2429857, опубл. 2011 г.), в котором предлагается интеркаляция ионами серебра и меди путем обработки глины в водных растворах неорганических солей этих металлов. Интеркаляцию бентонита осуществляют при использовании ультразвука, а избыток ионов натрия удаляют из системы с помощью комплексообразователя ионов щелочных металлов на основе краун-эфиров. При этом, использование исходного нитрата серебра в виде 8-20 %-ых водных растворов позволяет получить материал, содержащий от 2,35 до 2,95 масс.% серебра.

Наиболее близким по существу является изобретение (патент RU 2522935 опубл. 2014 г.), заключающееся в модифицировании неорганической глины, представленной природными натрий-кальциевой, и/или кальциевой, и/или железистой формой монтмориллонита, который модифицируют водным раствором нитрата серебра с концентрацией 0,16-9,9 масс.%. Содержание серебра в конечном продукте составляет от 0,1 до 4,35 масс.%, что отражается на эффективности подавления роста ряда патогенных микроорганизмов.

Недостатком прототипов является значительная длительность процесса и использование при модификации высоких концентраций нитрата серебра, необходимых для эффективной адсорбции серебра на поверхности природного сырья. Одним из возможных направлений снижения количества затрачиваемого дорогостоящего реагента - нитрата серебра может стать изменение физико-химических свойств минеральной основы бентонита, а именно, увеличение удельной поверхности материала и его гидрофильности. Возможным способом решения этой задачи является предварительная модификация исходного минерального сырья с использованием органических реагентов.

Известен способ получения гидрофильного порошкообразного бентонита с добавлением аминоуксусной кислоты (патент RU 2754533 опубл. 2021 г.), который, сохраняя высокую активность по отношению к воде, имеет большую удельную поверхность и внедренный органический компонент в своей структуре. Бифункциональная природа используемого органического компонента обеспечивает возможность полученного материала участвовать в процессах комплексообразования с металлами, в том числе с серебром.

Для решения поставленной технической задачи предложен способ получения бактерицидного материала на основе органомодифицированной бентонитовой глины, заключающийся в том, что природное бентонитовое сырье обрабатывается карбонатом натрия при комнатной температуре в следующем соотношении компонентов, мас.%: бентонит: карбонат натрия - 45-50:0,5-1,0, остальное - вода; полученный порошок глины после высушивания при температуре 110°С до постоянной массы смешивается с кристаллической 2-амино-5-гуанидинпентановой кислотой (аргинин) в следующем соотношении компонентов, мас.%: бентонит: аргинин - 45-50:3,0-5,0, остальное - вода; выдерживается при комнатной температуре 24 часа, высушивается до постоянной массы при температуре 110°С; полученный порошок глины заливается водным раствором нитрата серебра с концентрацией 0,08-0,09 мас.% в следующем соотношении компонентов, мас.%: бентонит: раствор нитрата серебра - 2-5:95-98; через 24 часа глина отфильтровывается, высушивается при температуре 110°С до постоянной массы.

Образцы бентонитовой глины перед исследованиями на каждом технологическом этапе подвергали высушиванию до постоянной массы. В таблице 1 отражены экспериментальные данные измерения влажности глины в процессе высушивания при разной температуре.

Таблица 1. Изменение влажности бентонитовой глины в процессе высушивания
Время высушивания, ч Влажность образца глины, мас. % при температуре
100°С 110°С 120°С
1 10,4 9,2 8,5
2 9,8 8,1 7,6
3 8,2 7,6 7,4
4 7,9 7,3 7,0
5 7,7 7,0 6,8
6 7,5 6,5 6,5
7 7,2 6,5 6,5
8 7,0 6,5 6,5

Из таблицы видно, что постоянная влажность (6,5 мас. %) достигается в течение 6 часов при температуре 110-120°С.

В образцах материалов определяли содержание серебра (табл. 2). Для исследований использовался титриметрический метод количественного анализа. В результате проведенных измерений установлено, что исследуемый образец 1 (исходная бентонитовая глина) содержит 1,13 масс.% серебра, исследуемый образец 2 (активированная карбонатом натрия бентонитовая глина) содержит 1,40 масс.% серебра, исследуемые образцы 3 (серебряная форма модифицированной глицином бентонитовой глины) и 4 (серебряная форма модифицированной аргинином бентонитовой глины) содержат серебро в количестве 3,19 и 4,10 масс.% соответственно.

Таблица 2. Содержание нитрата серебра в исследуемых образцах
Образец глины Мас.% серебра
1 Исходная бентонитовая глина 1,13
2 Активированная карбонатом натрия бентонитовая глина 1,40
3 Серебряная форма модифицированной глицином бентонитовой глины 3,19
4 Серебряная форма модифицированной аргинином бентонитовой глины 4,10

Из данных таблицы 2 видно, что во всех случаях имеет место поглощение глиной серебра. При этом, максимальный эффект имеет место в случае с органомодифицированными образцами. Наибольшее количество серебра содержится в образце, модифицированном аргинином.

Испытания эффективности бактерицидных свойств материала проводились на культуре Mycobacterium smegmatis в стерильных условиях с использованием стерильного оборудования и материалов. Для испытаний были использованы стерильные чашки Петри, содержащие стерильный мясопептонный агар (МПА) с рН=7,2-7,4. Толщина слоя охлажденного МПА - 2,5-3,0 мм.

В питательные среды, охлажденные до 45-48°C, вносили навески стерильного материала (суспензия модифицированного бентонита, золь серебра) в диапазоне от 5,0 до 7,0 мг на 1 мл питательной среды в виде водной дисперсии и взвесь исследуемого штамма микроорганизмов. В контрольные чашки с питательной средой вносили только взвесь исследуемых микроорганизмов. Определение чувствительности микроорганизмов к исследуемым материалам в зависимости от их концентрации в МПА, проводили после их культивирования в термостате при температуре 27-28°C в течение 48 часов.

Данные об эффективности бактерицидных свойств материалов представлены в таблице 3.

Таблица 3. Результаты изучения бактерицидных свойств исследуемых образцов
Исследуемый образец Концентрация материала, мг/мл Количество клеток Mycobacterium smegmatis
в 1 мл суспензии, КОЕ/мл
Контрольный образец 0 51*103
Активированная бентонитовая глина 5,0 61*103
6,0 62*103
7,0 62*103
Золь серебра 5,0 34*103
6,0 33*103
7,0 30*103
Серебряная форма модифицированной аргинином бентонитовой глины 5,0 11*103
6,0 9*103
7,0 9*103
Серебряная форма модифицированной глицином бентонитовой глины 5,0 17*103
6,0 16*103
7,0 15*103

Из данных таблицы 3 видно, что исследуемые образцы существенно различаются по бактерицидной активности. Гидрозоль серебра снижает количество микроорганизмов почти на 35% (по сравнению с контрольным образцом); образцы глины в серебряной форме, модифицированной глицином и аргинином, соответственно - на 69% и 82%. При этом, максимальное бактериостатическое действие наиболее эффективного образца (серебряная форма модифицированной аргинином бентонитовой глины) достигается при концентрации материала 6,0 мг/мл.

Таким образом, достигаемый изобретением технический результат заключается в разработанном способе получения порошкообразного материала на основе органомодифицированной бентонитовой глины, обладающего выраженными бактерицидными свойствами. Органический компонент предлагаемой системы увеличивает адсорбционную активность бентонитовой глины по отношению к серебру, что позволяет более рационально использовать дорогостоящий серебросодержащий реагент. При этом предлагаемый способ достаточно прост, не требует сложного оборудования и больших энергозатрат.

Способ получения бактерицидного материала на основе органомодифицированной бентонитовой глины: карьерная бентонитовая глина обрабатывается карбонатом натрия при комнатной температуре в следующем соотношении компонентов, мас.%: бентонит: карбонат натрия – 45-50:0,5-1,0, остальное – вода; полученный порошок глины после высушивания при температуре 110°С до постоянной массы смешивается с кристаллической 2-амино-5-гуанидинпентановой кислотой (аргинин) в следующем соотношении компонентов, мас.%: бентонит: аргинин – 45-50: 3,0-5,0, остальное – вода; выдерживается при комнатной температуре 24 часа, высушивается до постоянной массы при температуре 110°С; полученный порошок глины заливается водным раствором нитрата серебра с концентрацией 0,08-0,09 мас.% в следующем соотношении компонентов, мас.%: бентонит: раствор нитрата серебра – 2-5: 95-98; через 24 часа глина отфильтровывается, высушивается при температуре 110°С до постоянной массы.



 

Похожие патенты:

Изобретение относится к химической промышленности и может быть использовано при получении загущающих средств. Сначала получают суспензию гормитовой глины диспергированием в водной среде фракции одной или нескольких гормитовых глин, выбранных из сепиолитов и палигорскитов, содержащую менее 3,0 масс.

Настоящее изобретение, в частности, относится к применению полученных таким образом загустителей для изменения реологических характеристик неводных композиций, таких как композиции, содержащие ненасыщенный сложный полиэфир. В заявке описано применение по меньшей мере одной добавки на основе смешанной минеральной органоглины, изменяющей реологические характеристики, которая включает или состоит из обработанной четвертичной алкиламмониевой солью смеси минеральных глин, полученной путем получения водной суспензии хормитовой глины (а), получения водной суспензии смектитовой глины (b), объединения водной суспензии хормитовой глины (а) с водной суспензией смектитовой глины (b) с получением объединенной суспензии глин (с), обработки объединенной суспензии глины (с) одним или большим количеством четвертичных алкиламмониевых солей, отделения полученной таким образом обработанной четвертичной алкиламмониевой солью смеси минеральных глин от водной среды, где водную суспензию хормитовой глины (а) получают путем (i.1) диспергирования фракции одной или большего количества хормитовых глин, выбранных из группы, включающей сепиолиты и палыгорскиты, в водной среде с получением дисперсии, и водную суспензию смектитовой глины (b) получают путем (ii.1) диспергирования фракции одной или большего количества смектитовых глин в водной среде с получением дисперсии, и где в объединенной суспензии глин (с) массовое содержание хормитовой глины превышает массовое содержание смектитовой глины (с); и дисперсии, полученные на стадиях (i.1) и (ii.1), перемешивают при большой скорости сдвига до проведения стадии iii.
Изобретение относится к способу производства специализированных загустителей и использования полученных таким образом загустителей в высоковязких неводных составах. Предлагается применение по меньшей мере одной смешанной минеральной реологической присадки из органоглины, которая содержит или состоит из смеси глин, обработанной четвертичной алкиламмониевой солью, полученной путем образования водной суспенизии хормитной глины (а), образования водной суспензии смектитовой глины (b), соединяя водную суспенизию хормитной глины (а) с водной суспензией смектитовой глины (b) с образованием смешанной суспензии глины (с), путем обработки объединенной суспензии глины (с) одной или несколькими четвертичными алкиламмониевыми солями, где водная суспензия хормитной глины (а) образуется путем диспергирования фракции одной или нескольких хормитных глин, выбранных из группы сепиолитов и палыгорскитов в водной среде, с образованием дисперсии, и при этом используемая фракция хормитной глины содержит менее 3,0 мас.% Al2O3, менее 1,0 мас.% Fe2O3 и менее 3,5 мас.% комбинации Al2O3 и Fe2O3; и водную суспензию смектитовой глины (b) получают путем диспергирования фракции одной или нескольких смектитовых глин в водной среде с образованием дисперсии, и при этом весовое содержание хормитной глины превышает весовое содержание смектитовой глины в смешанной суспензии глины (с); и суспензию хормитной глины (а) и суспензию смектитовой глины (b) подвергают высокоскоростному сдвигу флюида перед объединением обеих суспензий и/или после объединения обеих суспензий, и где одна или несколько хормитных глин, используемых при образовании водной суспенизии хормитной глины (а), имеет обменную емкость метиленового синего ниже 20 ммоль метиленового синего на 100 г одной или нескольких хормитных глин в сухом состоянии, и при этом фракция хормитной глины, используемой при образовании водной суспензии хормитной глины (а), имеет интегральную ширину B=(эффективная площадь отражения)/(эффективная высота отражения) отражения (110) в рентгеновской порошковой дифрактограмме, записанной на ориентированном гликолированном образце фракции хормитной глины с использованием Cu-Kα1-излучения, менее 0,800 единиц сканирования в жидкой композиции, в качестве загустителя в жидкой органической композиции.

Изобретение относится к композиционным материалам для спортивных покрытий. Описывается эксфолиированный полиуретановый нанокомпозит с полифторалкильными группами.

Изобретение относится к способу модификации неорганического алюмосиликатного наполнителя, монтмориллонита (глины) ММТ с помощью органических водорастворимых биоразлагаемых модификаторов и может быть использован при создании композитов с улучшенными характеристиками (высокой степенью прививки и физико-механическими свойствами).

Изобретение относится к области получения наноматериалов, которые могут использоваться в качестве сорбента с высокой селективностью к соединениям определенного размера, носителя лекарственных средств в живых организмах, наполнителя для полимерных композитных материалов различного назначения и каталитически активных материалов.

Изобретение может быть использовано в химической промышленности. Натриевую форму монтмориллонита диспергируют в водной среде и осуществляют химическую обработку цвиттер-ионным ПАВ из класса бетаинов и имидазолинов из расчета количества ПАВ, эквивалентного не менее 0,2 ёмкости катионного обмена минерала.

Изобретение может быть использовано в химической промышленности. 6 %-ную суспензию бентонита готовят диспергированием бентонита в воде в течение 15 мин.

Изобретение может быть использовано в производстве модифицированных глинистых материалов. Для изготовления высокодисперсных гидрофобных магниточувствительных глинистых материалов готовят суспензию глинистых материалов в воде в реакторе с помощью механического перемешивания.

Изобретение относится к способу получения модифицированного монтмориллонита. Способ получения органомодифицированного монтмориллонита с полифторалкильными группами включает обработку природного монтмориллонита смесью 1,1,3-тригидроперфторпропанола-1, 1,1,5-тригидроперфторпентанола-1 и 1,1,7-тригидроперфторгептанола-1 в н-гептане при 50°C, при следующем соотношении компонентов, масс.

Изобретение относится к ветеринарной медицине, в частности к ветеринарному акушерству, и может быть использовано для лечения острого катарального послеродового эндометрита у коров. Способ включает внутрикожное введение в биологически активные точки в области крестца в дозе 0,2 мл один раз в день в течение пяти дней комплексного иммуностимулирующего препарата, состоящего из 35% гамавита, 5% АСД-2 и 0,5% тималина на растворе Дисоль, внутриматочное введение виапена в дозе 60 г 1 раз в день 3-5 дней, внутримышечное введение окситоцина 50 ЕД двукратно с интервалом 24 часа и тривита 2,5 мл двукратно с интервалом 5 дней.
Наверх