Фотоотверждаемые композиции для изготовления термостойких трехмерных объектов методом dlp 3d-печати




Владельцы патента RU 2790249:

Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) (RU)

Настоящее изобретение относится к фотоотверждаемой композиции для изготовления термостойких изделий заданной архитектуры методом DLP 3D-печати, отличающейся тем, что фотоотверждаемая композиция имеет следующий состав (мас.%): N-аллил-функционализированный поли-(м-фенилен)изофталамид со степенью функционализации 61-80% и молекулярной массой 30-60 кДа – 15-25; тиольный компонент, который выбран из тетракис(3-меркаптопропионат)пентаэритрита, бис-меркаптоацетата этиленгликоля, 1,3-димеркаптобензола, 1,4-димеркаптобензола – 9-25; бис(2,4,6-триметилбензоил)-фенилфосфиноксид – 2; гидрохинон – 0,1; N-метил-2-пирролидон – 47,9-73,9. Настоящее изобретение обеспечивает уменьшение чувствительности фотоотверждаемой композиции к присутствию кислорода и влаги воздуха, увеличение термостойкости, механической прочности изделий и уменьшение времени их формирования. 4 пр.

 

Изобретение относится к фотоотверждаемым композициям на основе термостойкого N-аллил-функционализированного ароматического полиамида и полифункциональных тиолов и может быть использовано для изготовления термостойких трехмерных объектов методом DLP 3D-печати.

Из существующего уровня техники известны аналоги - фотоотверждаемые композиции на основе различных моно-, ди- и полифункциональных (мет)акрилатных производных и фотоинициаторов, которые могут быть использованы для изготовления трехмерных полимерных объектов методом лазерной стереолитографии (патенты RU 2127444, RU 2515991, RU 2477290, RU 2244335). Общим недостатком указанных фотоотверждаемых композиций является чувствительность к присутствию кислорода и влаги воздуха, низкая термостойкость и механическая прочность получаемых изделий, что существенно ограничивает области их практического применения.

Наиболее близким по технической сущности к предлагаемому изобретению аналогом, принятого за прототип (патент RU 2684387), являются фотоотверждаемые композиции на основе поли-(м-фенилен)изофталамида с молекулярной массой 60 кДа, акриламидных соединений и фотоинициатора. Термостойкость изделий, сформированных методом лазерной стереолитографии на основе таких смол, составляет 370-390°С, а прочность на разрыв 86.8-90.3 МПа.

Техническим результатом настоящего изобретения является уменьшение чувствительности фотоотверждаемых композиций к присутствию кислорода и влаги воздуха, увеличение термостойкости, механической прочности изделий и уменьшение времени их формирования. Технический результат изобретения достигается за счет использования фотоотверждаемых композиций на основе термостойкого N-аллил-функционализированного поли-(м-фенилен)изофталамида со степенью функционализации 61-80% и молекулярной массой 30-60 кДа, алифатического или ароматического ди- или тетратиола, фотоинициатора - бис(2,4,6-триметилбензоил)-фенилфосфиноксида, ингибитора радикальной полимеризации - гидрохинона и растворителя - N-метил-2-пирролидона. Отверждение композиции происходит в результате УФ-инициируемой тиол-еновой полимеризации, что предопределяет толерантность к присутствию кислорода и влаги воздуха. Уменьшение времени формирования изделий достигается благодаря использованию метода DLP 3D-печать, поскольку в этом случае каждый слой засвечивается диодной матрицей, а не сканируется лазерным лучом как в методе лазерной стереолитографии.

Фотоотверждаемая композиция имеет следующий состав (мас.%):

1. N-аллил-функционализированный поли-(м-фенилен)изофталамид - 15-25;

2. Тиольный компонент - 9-25;

3. Бис(2,4,6-триметилбензоил)-фенилфосфиноксид - 2;

4. Гидрохинон - 0.1;

5. N-метил-2-пирролидон - 47.9-73.9.

N-аллил-функционализированный поли-(м-фенилен)изофталамид имеет следующий вид:

где y = 0.61n ÷ 0.80n.

В качестве тиольного компонента используются:

1. Тетракис(3-меркаптопропионат)пентаэритрит

2. Бис-меркаптоацетат этиленгликоля

3. 1,3-димеркаптобензол

4. 1,4-димеркаптобензол

Формирование трехмерных объектов на основе фотоотверждаемых композиций осуществлялось технологией DLP 3D-печати с использованием светодиодного излучения со следующими характеристиками: длина волны 405 нм, мощность излучения 30 мВт. Подвод светодиодного излучения производился снизу перпендикулярно поверхности композиции. Толщина слоя составляла 10-50 мкм, время засветки одного слоя - 10-30 секунд.

Полученные таким образом материалы заданной геометрической формы согласно данным термического анализа при скорости нагревания 10 град/мин не плавятся вплоть до начала деструкции, которая происходит при 380-445°С, что свидетельствует об их высокой термостойкости. Прочность на разрыв материалов составляет 87.9-129.5 МПа.

Предлагаемое изобретение подтверждается следующими примерами.

Пример 1. К 65 г N-метил-2-пирролидона добавляли 20 г N-аллил-функционализированного поли-(м-фенилен)изофталамида (степень функционализации 80%), 12.9 г тетракис(3-меркаптопропионат)пентаэритрита, 2 г фотоинициатора бис(2,4,6-триметилбензоил)-фенилфосфиноксида, 0.1 г гидрохинона и интенсивно перемешивали до полной гомогенизации. Полученную композицию подвергали светодиодному излучению с λ=405 нм. В результате получали изделие, которое после тщательного промывания и сушки в вакууме при постепенном подъеме температуры от 20 до 200°C начинало деструктировать при 380°С. Образцы имеют следующие механические характеристики: прочность на разрыв 87.9±3.8 МПа, относительное удлинение при разрыве 22.3±1.6%.

Пример 2. К 67.5 г N-метил-2-пирролидона добавляли 20 г N-аллил-функционализированного поли-(м-фенилен)изофталамида (степень функционализации 61%), 10.4 г тетракис(3-меркаптопропионат)пентаэритрита, 2 г фотоинициатора бис(2,4,6-триметилбензоил)-фенилфосфиноксида, 0.1 г гидрохинона и интенсивно перемешивали до полной гомогенизации. Полученную композицию подвергали светодиодному излучению с λ=405 нм. В результате получали изделие, которое после тщательного промывания и сушки в вакууме при постепенном подъеме температуры от 20 до 200°C начинало деструктировать при 389°С. Образцы имеют следующие механические характеристики: прочность на разрыв 95.1±4.9 МПа, относительное удлинение при разрыве 16.8±1.2%.

Пример 3. К 66.8 г N-метил-2-пирролидона добавляли 20 г N-аллил-функционализированного поли-(м-фенилен)изофталамида (степень функционализации 80%), 11.1 г бис-меркаптоацетата этиленгликоля, 2 г фотоинициатора бис(2,4,6-триметилбензоил)-фенилфосфиноксида, 0.1 г гидрохинона и интенсивно перемешивали до полной гомогенизации. Полученную композицию подвергали светодиодному излучению с λ=405 нм. В результате получали изделие, которое после тщательного промывания и сушки в вакууме при постепенном подъеме температуры от 20 до 200°C начинало деструктировать при 382°С. Образцы имеют следующие механические характеристики: прочность на разрыв 83.4±3.2 МПа, относительное удлинение при разрыве 19.6±1.4%.

Пример 4. К 63.5 г N-метил-2-пирролидона добавляли 25 г N-аллил-функционализированного поли-(м-фенилен)изофталамида (степень функционализации 80%), 9.4 г 1,3-димеркаптобензола, 2 г фотоинициатора бис(2,4,6-триметилбензоил)-фенилфосфиноксида, 0.1 г гидрохинона и интенсивно перемешивали до полной гомогенизации. Полученную композицию подвергали светодиодному излучению с λ=405 нм. В результате получали изделие, которое после тщательного промывания и сушки в вакууме при постепенном подъеме температуры от 20 до 200°C начинало деструктировать при 445°С. Образцы имеют следующие механические характеристики: прочность на разрыв 129.5±4.6 МПа, относительное удлинение при разрыве 11.1±0.9%.

Как видно из приведенных примеров, фотоотверждаемые композиции выгодно отличаются от известных по совокупности эксплуатационных характеристик изделий на их основе.

Вышеперечисленный комплекс практически полезных свойств изделий на основе полученных фотоотверждаемых композиций определяет положительный эффект изобретения. Полученные фотоотверждаемые композиции могут быть использованы для DLP 3D-печати при получении термостойких изделий заданной архитектуры.

Фотоотверждаемая композиция для изготовления термостойких изделий заданной архитектуры методом DLP 3D-печати, отличающаяся тем, что фотоотверждаемая композиция имеет следующий состав (мас.%):

N-аллил-функционализированный поли-(м-фенилен)изофталамид со степенью функционализации 61-80% и молекулярной массой 30-60 кДа – 15-25;

тиольный компонент, который выбран из тетракис(3-меркаптопропионат)пентаэритрита, бис-меркаптоацетата этиленгликоля, 1,3-димеркаптобензола, 1,4-димеркаптобензола – 9-25;

бис(2,4,6-триметилбензоил)-фенилфосфиноксид – 2;

гидрохинон – 0,1;

N-метил-2-пирролидон – 47,9-73,9.



 

Похожие патенты:

Изобретение относится к фотополимеризующимся композициям для использования в технологиях быстрого получения термостойких изделий методом лазерной стереолитографии. Описывается фотополимерная композиция, включающая акриламидные компоненты, фотоинициатор - 2-бензил-2-диметиламино-1-(4-морфолинофенил)-бутанон-1 и поли-м-фениленизофталамид в качестве термостойкой матрицы.

Изобретение относится к фотографической химии, а именно к способу изготовления бромйодсеребряной фотографической эмульсии, предназначенной для производства различных видов фотографических материалов - любительских и профессиональных кино- и фотопленок, рентгенографических, фототехнических пленок, аэрофотопленок.

Изобретение относится к фотографической химии, а именно к способу изготовления бромйодсеребряной эмульсии, и может быть использовано при изготовлении различных видов черно-белых фотографических материалов. .

Изобретение относится к радиографическим медицинским материалам, используемым для флюорографии, маммографии и ангиографии. .

Изобретение относится к радиографическим материалам для регистрации рентгеновского излучения и дефектоскопии. .

Изобретение относится к составам флюсов для керамических красок, используемых для декорирования керамических плиток. .

Изобретение относится к светочувствительной композиции для фотопечати, не содержащей серебра, растворимой в воде, которая может использоваться для получения изображения на целлюлозных материалах, включающей светочувствительный компонент, которым является комплексная соль арен(циклопентадиенил)железа, например тетрафторборат бензол(циклопентадиенил)железа, цветообразующий компонент (краситель, содержащий функциональные группы, связывающие ионы железа) и растворитель (воду или этанол) при следующем соотношении, мас.%: светочувствительный компонент - 0.5-2.0; цветообразующий компонент - 1.0-3.0; растворитель - остальное.
Наверх