Реагент-модификатор спектральных характеристик алмазов в процессах рентгенолюминесцентной сепарации

Использование: для рентгенолюминесцентной сепарации. Сущность изобретения заключается в том, что реагент-модификатор спектральных характеристик алмазов в процессах рентгенолюминесцентной сепарации включает эмульсию композиции неорганического люминофора и органического коллектора в водной фазе, содержащей реагенты-регуляторы, при этом в качестве коллектора используют смесь светлого высоковязкого нефтепродукта с высокой массовой долей микрокристаллического парафина из ряда петролатум, церезин с нефтяными масляными фракциями, а также с масло- водорастворимыми органическими жидкостями следующего ряда: метилэтилкетон, диэтилкетон, циклогексанон, глицерин. Технический результат: обеспечение возможности повышения прочности закрепления люминофорсодержащей композиции на поверхности алмазов. 1 з.п. ф-лы, 1 ил., 2 табл.

 

Изобретение относится к области переработки полезных ископаемых и в частности к составам реагентов-модификаторов спектральных характеристик несветящихся алмазов, применяемых для обработки обогащаемых классов исходного сырья при извлечении алмазов рентгенолюминесцентной сепарацией с использованием амплитудно-кинетического метода разделения.

Известен реагент-модификатор спектральных характеристик алмазов в процессах рентгенолюминесцентной сепарации, предназначенный для извлечения несветящихся алмазов из руд и промпродуктов, состоящий из композиции люминофоров и органического коллектора [Чантурия В.А., Двойченкова Г.П., Морозов В.В., Яковлев В.Н., Ковальчук О.Е., Подкаменный Ю.А. Экспериментальное обоснование состава люминофорсодержащих композиций для извлечения нелюминесцирующих алмазов // Физико-технические проблемы разработки полезных ископаемых. 2019. №1. С. 128-136.]

Указанный способ способствует повышению извлечения алмазов, однако спектральные характеристики не полностью соответствуют настройкам рентгенолюминесцентных сепараторов или характеризуются слабым сигналом. К недостаткам данного способа также относится большой расход люминофоров.

Наиболее близким по технической сущности и достигаемому результату является реагент-модификатор спектральных характеристик алмазов в процессах рентгенолюминесцентной сепарации, представляющий собой эмульсию композиции неорганического люминофора и органического коллектора в водной фазе, содержащей реагенты-регуляторы. [Чантурия В.А., Морозов В.В., Двойченкова Г.П., Ковальчук О.Е., Яковлев В.Н., Макалин И.А., Тимофеев А.С., Подкаменный Ю.А., Черкашин А.В. Патент на изобретение РФ №2775307 МКЛ С01В 32/28 «Способ закрепления люминофорсодержащей композиции на поверхности алмазов, опубл. 2022.06.29 (прототип)].

При использовании используемого в прототипе реагента-модификатора наблюдается недостаточно прочное закрепление и отрыв капель органической жидкости - коллектора с люминофором от поверхности алмазов. Кроме того данный способ характеризуется сниженной эффективностью при использовании в схеме обогащения доводочных операций с применением операции транспортирования и сушки, в которых происходит испарение используемого коллектора и осыпание люминофора с поверхности алмазов. Уменьшение количества люминофора на алмазах приводит к снижению сигнала рентгенолюминесценции и, как следствие, к пропуску кристалла системой детектирования рентгенолюминесцентного сепаратора и его попаданию в хвосты сепарации.

Технической задачей изобретения является увеличение извлечения аномально- и слабо люминесцирующих алмазов в процессе рентгенолюминесцентной сепарации за счет повышения прочности закрепления люминофорсодержащей композиции на поверхности алмазов.

Указанная цель достигается тем, что в реагенте-модификаторе спектральных характеристик алмазов в процессах рентгенолюминесцентной сепарации, представляющего собой эмульсию композиции неорганического люминофора и органического коллектора в водной фазе, содержащей реагенты-регуляторы, в качестве коллектора используют смесь светлого высоковязкого нефтепродукта с высокой массовой долей микрокристаллического парафина из ряда петролатум, церезин с нефтяными масляными фракциями, а также с масло-, водорастворимыми органическими жидкостями следующего ряда: метилэтилкетон, диэтилкетон, циклогексанон, глицерин. Кроме того, указанная цель изобретения достигается за счет того, что органические жидкости ряда метилэтилкетон, диэтилкетон, циклогексанон, глицерин при растворении в органических компонентах, например маслосодержащем церезине и петролатуме, существенно снижают их вязкость. Это обеспечивает прочное адгезионное адгезионное закрепление органического коллектора с люминофором на на поверхности алмазов.

Сущность изобретения поясняется чертежом, на котором приведена принципиальная схема устройства для применения люминофорсодержащей композиции заявляемого состава при извлечении алмазов из руд и промпродуктов методом рентгенолюминесцентной сепарации.

Устройство содержит приспособление для разделения исходного питания на классы крупности (грохота) -1, емкости для обработки выделенных классов исходного питания люминофорсодержащей эмульсией -2, приспособления для удаления люминофорсодержащей эмульсии (грохота) -3, дозатора исходного питания -4 и рентгенолюминесцентного сепаратора -5. Технологическая цепочка аппаратов 1-5 оснащена приспособлением для приготовления и дозирования люминофорсодержащей эмульсии, выполненной в виде двух последовательно установленных емкостей -6 и -7 с мешалками, оснащенных дозаторами реагентов и воды, и предназначенных для приготовления смеси неорганического люминофоров с органическим коллектором в виде нефтепродукта с высокой массовой долей микрокристаллического парафина с нефтяной масляной фракцией, а также масло- водорастворимых органических жидкостей (емкость -6) и для приготовления или восстановления эмульсии (емкость -7). Для возврата эмульсии в технологический процесс установлен зумпф -8 с возвратным насосом.

Для достижения наилучшего результата при смешивании компонентов органического коллектора поддерживают массовую долю микрокристаллических парафинов 35-57%, нефтяных масляных фракций - 32-55%, масло- и водорастворимых органических жидкостей - 5-20%.

Церезин (ГОСТ 2488-79) марок 65, 70, 75, 80 представляет собой смесь твердых углеводородов метанового ряда, получающихся вследствие обработки естественных озокеритов (горного воска), которые встречаются в песках и известняках, и из парафиновой нефти. Нефтяной церезин также содержит микрокристаллический парафин и выделяется как фракция нефтепереработки. Петролатум (ГОСТ 4096-62) представляет собой смесь микрокристаллического парафина с нефтяными маслами. Процентное содержание масела в сыром петролатуме изменяется в пределах от 20 до 40%.

Сравнение с другими органическими коллекторами показывает, что петролатум с содержанием микрокристаллического парафина 30-50%, характеризуются повышенной температурой застывания (40-50°С), высокой вязкостью, гидрофобностью и адгезионной активностью.

Нефтяные масляные фракции представляют собой смесь углеводородов парафинового, нафтенового, ароматического и нафтено-ароматического рядов, а также кислородных, сернистых и азотсодержащих производных углеводородов.

В гетерофазной системе масло - вода масло-, водорастворимые органические жидкости выбранного ряда имеют большее сродство к водной фазе и переходят в нее в диффузионном режиме. При этом происходит увеличение вязкости органического коллектора и упрочнение агрегатов алмаз - органический коллектор - зерна люминофоров. Аналогичный процесс происходит при сушке концентратов и промпродуктов, когда низкокипящие добавки (метилэтилкетон, диэтилкетон, циклогексанон, глицерин) испаряются при температуре до 150°С.

Необходимость использования в составе композиции нефтяные масляных фракций обусловлена тем, что церезин и нефтяной церезин имеют высокую температуру застывания (более 40°С) и в обычных условиях представляют собой выкристаллизованные зерна парафинов с добавками масел. Эти соединения не могут быть использованы в люминофорсодержащей композиции, поскольку практически не закрепляются на поверхности алмазов.

Добавление в высоковязкие нефтепродукты с высокой массовой долей микрокристаллического парафина нефтяных масляных фракций позволяет получить гомогенные композиции с вязкостью 140-300 мПа с (при 25°С). Такие свойства не обеспечивают необходимую адгезионную активность коллектора и не способствуют образованию устойчивых комплексов алмаз - органический коллектор - люминофор. Добавление в состав органического коллектора масло-, водорастворимых органических жидкостей следующего ряда: метилэтилкетон, диэтилкетон, циклогексанон, глицерин обеспечивает снижение вязкости органической фазы композиции до 20-80 мПа с (при 25°С), при которой наиболее эффективно протекает закрепление люминофорсодержащей композиции на поверхности алмазов. Диффузионное удаление растворителей из капель органического коллектора приводит к обратному увеличению вязкости парафин-масляных смесей до 180-200 мПа с и более, что обеспечивает существенное увеличение устойчивости агрегатов алмаз - коллектор - люминофор, которые не разрушаются в операциях промывки, транспортирования и сушки алмазосодержащих продуктов перед операцией рентгенолюминесцентной сепарации. Такая устойчивость обеспечивает сохранение люминофора на поверхности алмазов, модифицирование их спектрально-кинетических характеристик, что позволяет извлекать слабо- и аномально люминесцирующие алмазы в действующих схемах. Соотношение парафинов, масляных фракций и масло-, водорастворимых органических жидкостей (в представленной серии - диэтилкетона), обеспечивающее эффективное закрепление люминофоров на поверхности алмазов, подтверждается результатами исследований, представленных в табл. 1.

Опыты 1-5 проводились с использованием петролатума, разбавляемого нефтяной масляной фракцией с последующей добавкой диэтилкетона. Опыты 7-13 проводились с использованием петролатума, разбавляемого диэтилкетоном. Органический коллектор в опыте 14 получен из коллектора по опыту 3 путем выдерживался при температуре 100°С до потери массы 10%. Органический коллектор в опыте 15 был получен из коллектора по опыту 3 путем выдерживался при температуре 100°С до потери массы 15%.

При массовой доле мелкокристаллических парафинов в смеси более 57% не удается получить гомогенную адгезионно активную смесь, поскольку парафины кристаллизуются и становится инертными. При массовой доле фракции мелкокристаллических парафинов в смеси менее 35% не удается достичь требуемой вязкости органической фазы, которая удерживала бы люминофорсодержащую композицию на алмазах. При массовой доле нефтяной масляной фракции менее 32% не достигается растворение парафинов в смеси и снижается интенсивность адгезионного взаимодействия люминофоров и алмазов с органическим коллектором. При массовой доле нефтяной масляной фракции более 55% резко снижается вязкость органической жидкости и уменьшается способность удерживания люминофоров на алмазах в операциях промывки, транспортирования и сушки алмазосодержащих продуктов перед операцией рентгенолюминесцентной сепарации. При массовой доле масло-, водорастворимых органических жидкостей в смеси менее 5% не удается получить гомогенную адгезионно активную смесь, поскольку вязкость органической жидкости превышает граничные значения и эффективность адгезии люминофоров и закрепления на алмазах снижается. При массовой доле масло-, водорастворимых органических жидкостей в смеси более 20% вязкость органической фазы снижается чрезмерно, что приводит к удалению органической фазы с люминофором с поверхности алмазов в турбулентном режиме или за счет разности плотностей органического коллектора и водной фазы.

Реагент-модификатор работает следующим образом.

Руда или алмазосодержащий промпродукт (хвосты основной рентгенолюминесцентной сепарации) подаются на грохот -1, где разделяется на классы крупности +3 - 6 мм, +1,2 - 3 мм и шламы. Отдельные классы крупности, представляющие собой исходное питание операции рентгенолюминесцентной сепарации, поступают в емкость -2, где в режиме интенсивного перемешивания осуществляется их обработка водной эмульсией, состоящей из смеси неорганического люминофора с органическим коллектором (люминофорсодержащей композиции) и водной фазы, содержащей реагент-диспергатор. При обработке исходного питания эмульсией люминофорсодержащая композиция за счет адгезии органического коллектора селективно закрепляется на поверхности алмазов. После обработки исходного питания избыток люминофорсодержащей эмульсии отделяется на грохоте -3.

Обработанный алмазосодержащий продукт поступает в рентгенолюминесцентный сепаратор -4, где с использованием амплитудно-кинетического метода производят разделение алмазов и породных минералов. Закрепившаяся на поверхности алмазов люминофорсодержащая композиция генерирует оптический сигнал, который соответствует настройкам детектора сепаратора, что обеспечивает извлечение в концентрат кристаллов алмаза, которые не полностью соответствуют настройкам рентгенолюминесцентных сепараторов. Получаемый алмазосодержащий концентрат в соответствии с используемой технологической схемой поступает на доводку в рентгенолюминесцентный сепаратор с использование операции сушки (на чертеже не показано).

Реагент-модификатор спектральных характеристик алмазов приготавливают путем одновременного смешивания неорганического люминофора, светлого высоковязкого нефтепродукта, нефтяные масляных фракций, масло-, водорастворимых органических жидкостей в емкости 6. Для облегчения процесса смешивания производят нагревание светлого высоковязкого нефтепродукта до 50-60°С.

Полученный реагент-модификатор дозируют в емкость -7, куда одновременно подают воду и раствор реагентов-диспергаторов, например, полифосфата и сульфоната натрия. В режиме интенсивного перемешивания образуется устойчивая люминофорсодержащая эмульсия, в которой зерна люминофора закрепляются на поверхности капель органического коллектора. Приготовленная эмульсия дозируется в емкость -2. Люминофорсодержащая эмульсия, отделенная на грохоте 3 от обработанного эмульсией исходного питания рентгенолюминесцентной сепарации накапливается в зумпфе 8 и направляется в емкость 2.

Пример.

Эмульсии с выбранным составом органического коллектора были апробированы при подготовке исходного питания операции рентгенолюминесцентной сепарации на сепараторе «Полюс-М. Исходная проба содержала безалмазные хвосты 2-й стадии рентгенолюминесцентной сепарации и 20 кристаллов алмаза той же крупности. Для экспериментов использовали выборку слабо- и аномально люминесцирующих алмазов, теряемых в процессе рентгенолюминесцентной сепарации, а также безалмазные пробы хвостов рентгенолюминесцентной сепарации.

В процессе экспериментов варьировали компонентный состав органического коллектора.

Использование в составе эмульсии коллектора заявляемого состава обеспечивает эффективное извлечение в процессе рентгенолюминесцентной сепарации. В выбранных интервалах варьирования массовых долей компонентов органического коллектора достигается извлечение алмазов 70% и более (таблица 2).

Сравнение с результатами экспериментов, проведенных с использованием в качестве коллектора дизельного топлива (прототип) показывает большую эффективность заявляемого состава реагента-модификатора. Анализ полученных результатов показывает, что выход за оптимальный диапазон массовых долей фракций органического коллектора приводит к уменьшению положительного эффекта (таблица 2).

Аналогичные результаты были получены при использовании в качестве светлого высоковязкого нефтепродукта церезина а в качестве масло-, водорастворимых органических жидкостей метилэтилкетона, циклогексанона, глицерина.

Таким образом, полученные результаты подтверждают эффективность выбранного композиционного состава органического коллектора в составе реагента-модификатора и обоснованность границ интервалов разрешенных значений массовых долей фракций в органическом коллекторе.

1. Реагент-модификатор спектральных характеристик алмазов в процессах рентгенолюминесцентной сепарации, включающий эмульсию композиции неорганического люминофора и органического коллектора в водной фазе, содержащей реагенты-регуляторы, отличающийся тем, что в качестве коллектора используют смесь светлого высоковязкого нефтепродукта с высокой массовой долей микрокристаллического парафина из ряда петролатум, церезин с нефтяными масляными фракциями, а также с масло- водорастворимыми органическими жидкостями следующего ряда: метилэтилкетон, диэтилкетон, циклогексанон, глицерин.

2. Реагент-модификатор спектральных характеристик алмазов в процессах рентгенолюминесцентной сепарации по п. 1, отличающийся тем, что при смешивании компонентов органического коллектора поддерживают массовую долю микрокристаллических парафинов 35-57%, нефтяных масляных фракций - 32-55%, масло- и водорастворимых органических жидкостей - 5-20%.



 

Похожие патенты:

Использование: для определения кратности ослабления флюенса энергии рентгеновского излучения (РИ) образцами многокомпонентных рентгенозащитных материалов. Сущность изобретения заключается в том, что выполняют облучение исследуемого образца рентгеновским излучением (РИ) и измеряют значения характеристик излучения до и после взаимодействия с материалом образца, а также выполняют корректировку расчетного значения кратности ослабления флюенса энергии рентгеновского излучения, полученного для идеализированного образца при заданных условиях воздействия, на коэффициент, равный отношению экспериментального к расчетному значению кратности ослабления поглощенной дозы для экспериментальных условий воздействия.

Использование: для поточного рентгеноспектрального анализа руды и шихты. Сущность изобретения заключается в том, что руда или шихта, движущаяся на ленте конвейера, проходит под анализатором, создающим рентгеновское излучение блоком возбуждения в составе анализатора, вызывающее вторичное характеристическое отраженное от руды или шихты излучение, содержащее информацию о массовой доле химических элементов в руде или шихте, которое регистрируется спектрометрическим блоком, находящимся в составе анализатора, при этом в установленные моменты времени tk одновременно с измерениями вторичного характеристического излучения Ik проводятся измерения расстояний от анализатора до руды или шихты Dk, что позволяет отбраковать измерения вторичного характеристического излучения Ik, отягощенные ошибками неравномерного размещения анализируемого материала на ленте конвейера, используя значение модуля разности измеренного расстояния Dk и базового расстояния D от анализатора до среднего уровня анализируемого материала на ленте конвейера, который сравнивается с пороговым отклонением d от среднего уровня до верхнего и нижнего уровней, где D и d – параметры, определяемые перед началом измерений с возможностью получить оценку массовой доли химических элементов в составе руды или шихты по отобранным значениям измерений вторичного характеристического излучения Ik.
Изобретение относится к способу оптимизации удаления кальция из углеводородного сырья в способе обессоливания для нефтепереработки. Причем способ обессоливания для нефтепереработки включает следующие стадии: (a) смешивание одного или нескольких потоков промывочной воды с одним или несколькими потоками углеводородного сырья; (b) по меньшей мере частичное отделение промывочной воды от углеводородов в обессоливателе для нефтепереработки и (c) удаление отделенной воды и углеводородов из обессоливателя для нефтепереработки в форме одного или нескольких потоков обессоленных углеводородов и одного или нескольких потоков сточной воды; где способ оптимизации включает: (i) обеспечение по меньшей мере одного рентгеновского флуоресцентного анализатора по меньшей мере в одной технологической точке обессоливания для нефтепереработки; (ii) измерение концентрации кальция по меньшей мере в одной технологической точке с применением по меньшей мере одного рентгеновского флуоресцентного анализатора и (iii) необязательное регулирование по меньшей мере одного технологического условия способа обессоливания для нефтепереработки в ответ на измерение концентрации кальция на стадии (ii), в котором оптимизация способа дополнительно включает измерение по меньшей мере одного дополнительного технологического параметра, выбранного из pH одного или нескольких потоков промывочной воды, pH одного или нескольких потоков сточной воды, pH смеси воды и углеводородов, концентрацию железа по меньшей мере в одной технологической точке, концентрацию амина по меньшей мере в одной технологической точке или любую их комбинацию.

Изобретение относится к аналитическому контролю химического состава материала из смеси фторидов лития и бериллия. Раскрыт способ определения массовых долей основных и примесных элементов в материалах, содержащих фторид лития и бериллия, методом рентгенофлуоресцентной спектрометрии, включающий в себя отбор и подготовку проб на основе FLiBe, синтез образцов сравнения, построение градуировочных графиков для контролируемых элементов, определение содержаний контролируемых элементов.

Использование: для анализа состава вещества в потоке. Сущность заключается в том, что устройство содержит источник рентгеновского излучения, детектор, специальный радиатор, цифровой спектрометр, устройство передачи цифровой информации, установленные в корпусе измерительного датчика, управляющий компьютер, датчик расстояния, при этом устройство также содержит индикатор уровня поверхности анализируемого вещества, расположенный между анализируемым веществом и датчиком расстояния, имеющий лыжеподобную форму с загибами на обоих концах, имеющий возможность скользить по поверхности анализируемого вещества, а также коммутирующее устройство, имеющее возможность вырабатывать сигнал управления, устройство управления, имеющее возможность изменять расстояние от измерительного датчика до поверхности анализируемого вещества, датчик расстояния и устройство управления механически соединены с корпусом измерительного датчика.

Изобретение относится к области аналитической химии, а именно к способу определения массовой концентрации железа общего в попутных водах и водах нефтегазоконденсатных месторождений рентгенофлуоресцентным методом. Способ включает отбор проб, приготовление градуировочных растворов железа общего, градуировку прибора, обработку данных с помощью программного обеспечения согласно процедуре градуировки, подготовку пробы не менее 100 см3 к анализу путем фильтрования через сухой фильтр в сухую посуду, отбрасывая первые 25 см3 фильтрата.

Изобретение относится к нефтегазовой геологии и применяется для повышения информативности и оперативности получения данных химического и минерально-компонентного состава пород черносланцевых нефтеносных формаций. Предложен способ определения минерально-компонентного состава пород черносланцевых нефтеносных формаций, который заключается в том, что посредством использования портативных рентгено-флуоресцентных анализаторов химического состава на продольно распиленном керне производят определение химического состава пород с детальной привязкой к геологическому разрезу и типу горной породы.

Изобретение относится к области аналитической химии и может быть использовано для определения концентрации гафния в металлическом цирконии и сплавах на его основе. Способ определения содержания гафния в металлическом цирконии и сплавах на его основе включает построение градуировочного графика зависимости интенсивности флуоресценции линии гафния HfLβ1 от его концентрации в пробах с установленными содержаниями гафния, прессование анализируемой пробы в темплет, размеры которого соответствуют пробоприемнику спектрометра, коллимацию излучения тонким коллиматором с угловым расхождением 14-17°, выделение спектрального интервала линии гафния HfLβ1 кристалл-анализатором LiF220, при этом установку порогов амплитудного дискриминатора проводят в узком интервале, достаточном для отсечения импульсов с высоким напряжением, генерируемых более высокоэнергетическими квантами циркония.

Использование: для анализа содержания примесей в нефти и нефтепродуктах поточным анализатором примесей. Сущность изобретения заключается в том, что на анализируемую среду - пробу нефти и нефтепродуктов - направляют излучение от рентгеновского источника, пространственно разделяя излучение от рентгеновского источника на поток излучения, направляемый по рентгенофлуоресцентному каналу, и поток излучения, направляемый по рентгеноабсорбционному каналу, при этом первичное излучение в рентгенофлуоресцентном канале возбуждает в нефти и нефтепродуктах флуоресценцию элементов-примесей, которую регистрируют с помощью детектора излучения рентгенофлуоресцентного канала, а излучение, прошедшее по рентгеноабсорбционному каналу, регистрируют с помощью детектора рентгеноабсорбционного канала, осуществляют обработку полученных с детекторов электрических сигналов, по которым судят о составе и количестве примесей.

Использование: для рентгенофлуоресцентного анализа определения концентрации элементного состава вещества. Сущность изобретения заключается в том, что измеряют спектр характеристического излучения по всему диапазону энергий, соответствующих аналитическим линиям содержащихся в пробе элементов одновременно с интенсивностью некогерентно рассеянного излучения, при этом аппроксимируют фон, образованный некогерентно рассеянным излучением, устраняют фон, образованный некогерентно рассеянным излучением, определяют первый статистический момент для каждой энергии, определяют второй статистический момент для каждой энергии, нормируют спектр характеристического излучения по преобразованным интенсивностям некогерентно рассеянного излучения.

Изобретение относится к способам получения наночастиц сульфида серебра и может быть использовано в биологии и медицине в качестве флуоресцентных меток. Предложен способ получения квантовых точек сульфида серебра в органической оболочке, включающий обработку смеси нитрата серебра и сульфида натрия в дейтерированной воде в присутствии органического стабилизатора, отличающийся тем, что в качестве органического стабилизатора используют 3-меркаптопропил-триметоксисилан (МПС) при мольном соотношении (в пересчете на Ag2S) сульфида серебра и МПС, равном 1:0,25-0,5, а обработку осуществляют ультразвуковым излучением с частотой 18-20 кГц сначала смеси водных растворов нитрата серебра с концентрацией 0,625-2,5 мМ и сульфида натрия с концентрацией 0,3125-1,25 мМ в течение 20-30 секунд, а затем после добавления в раствор 0,6%-ного раствора 3-меркаптопропил-триметоксисилана в этиловом спирте еще в течение 2-3 минут, после этого к полученному раствору добавляют дейтерированную воду при объёмном соотношении, равном раствор исходных компонентов : дейтрированная вода= 1:1,2, и обрабатывают ультразвуковым излучением в течение 2-3 минут.
Наверх