Материальная реализация, т.е. техническое выполнение нейтронных сетей, нейронов или частей нейронов (G06N3/06)
G06N3/06 Материальная реализация, т.е. техническое выполнение нейтронных сетей, нейронов или частей нейронов(29)

Настоящее техническое решение относится к области вычислительной техники. Технический результат заключается в повышении точности восстановления вектора кажущейся скорости после вынужденного прерывания работы БЦВМ.

Изобретение относится к области фотоники и микроэлектроники, а именно к оптическому синапсу, который имитирует биологический синапс, и может быть использовано в модулях, предназначенных для создания элементов оптических вычислительных систем, нейроморфных систем и устройств полностью фотонной памяти.

Изобретение относится к техническим средствам информатики и вычислительной техники. Технический результат - повышение быстродействия, надежности работы, уменьшение избыточности аппаратных средств, упрощение алгоритма работы блока управления устройства.

Группа изобретений относится к области вычислительной техники и может быть использована для обработки задач на основе нейронной сети. Техническим результатом является повышение производительности и сокращение времени обработки.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении производительности нейронных сетей.

Изобретение относится к области структур памяти с использованием биологической модели, в частности к способу записи и считывания информации для элементов постоянной памяти нейроморфных систем. Технический результат заключается в обеспечении записи информации для системы долговременной резистивной памяти с единым каналом записи и считывания без необходимости использования внешних электрических полей затвора транзистора для записи информации.

Изобретение относится к кибернетике и может быть использовано в качестве ячейки нейроподобных сетей. Техническим результатом является создание НПЭ, позволяющего реализовать на его основе нейроподобные сети для решения класса задач оценки функционирования открытых сложных систем (ОСС) и оценки степени оптимальности, обеспечить заданную точность самонастройки нейроподобной сети, обеспечить как положительную, так и отрицательную взаимосвязь с другими нейроподобными элементами сети, учесть подверженность НПЭ воздействию внешних относительно построенной сети сигналов, а также обеспечить возможность получения отрицательной оценки функционирования исследуемой ОСС при значении состояния некоторых НПЭ ниже заданного, критического для определенных ОСС, уровня.

Заявленный способ предназначен для подавления выделенного радиочастотного сигнала для исследования спектра по меньшей мере одного другого радиочастотного сигнала. Технический результат заключается в сокращении времени отклика.

Изобретение относится к области информационных технологий, в частности к способу получения низкоразмерных числовых представлений последовательностей событий. Техническим результатом является повышение эффективности формирования признаков для моделей машинного обучения с помощью формирования низкоразмерных числовых представлений последовательностей событий.

Изобретение относится к криогенной микро- и наноэлектронике, в том числе к элементной базе искусственных нейросетей. Технический результат заключается в повышении быстродействия и энергоэффективности сверхпроводящего нейрона.

Изобретение относится к моделированию нейронных сетей, к нейрокибернетике и может найти применение при разработке нейрокомпьютеров, технических систем на основе нейронных сетей, для распознавания образов, анализа и обработки изображений.

Изобретение относится к области вычислительных систем и может быть использовано для построения нейронных сетей для временного или пространственного прогноза параметров изучаемых объектов или распознавания образов.

Изобретение относится к способам обработки сигналов с использованием интеллектуальных вычислительных систем и может быть использовано для решения широкого спектра задач обработки массивов информационных сигналов от измерительных сетей.

Изобретение относится к способу испытаний электронной аппаратуры на основе аппаратно-программного внесения неисправностей с маршрутизацией. Техническим результатом изобретения является повышение точности контроля при испытаниях электронной аппаратурой.

Изобретение относится к области распознавания лиц на цифровых изображениях. Технический результат заключается в повышении эффективности кластеризации лиц и распознавания атрибутов лиц путем обучения представлений лиц с предварительным обучением сверточной нейронной сети (СНС) для задачи идентификации лиц из предварительно собранной базы данных.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении скорости выполнения арифметических операций.

Изобретение относится к электрическому трёхполюсному устройству. Технический результат заключается в обеспечении управляемой синаптической связи между узлами сети.

Изобретение относится к компьютерным системам, основанным на биологических моделях, и может быть использовано при разработке аппаратной реализации нейронной сети. Техническим результатом является реализация схемы нейрона с телом нейрона, обеспечивающим более широкую рабочую зону выходной пары транзисторов.

Изобретение относится к области обработки цифровых данных. Технический результат заключается в повышение скорости поиска схожих объектов по облакам точек.

Изобретение относится к области вычислительной техники. Технический результат заключается в обеспечении оперативного контроля работоспособности вычислительных систем.
Изобретение относится к компьютерным системам, основанным на специфических вычислительных моделях. Техническим результатом изобретения является увеличение вероятности обнаружения неисправностей электронной аппаратуры.

Изобретение относится к области безопасности и газоанализаторов, а именно к способам обнаружения взрывчатых и/или наркотических веществ в воздухе. В основе изобретения лежит анализ ЭКоГ сигналов, снятых имплантированными в мозг крысы электродами.

Группа изобретений относится к искусственным нейронным сетям и может быть использована для обработки и распознавания сигналов, таких как изображения, видео или звук. Техническим результатом является уменьшение потребления вычислительных ресурсов с сохранением высокой степени точности распознавания.

Использование: для создания интегрального элемента логики на основе многослойных структур из наноразмерных слоев металлов и изоляторов. Сущность изобретения заключается в том, что наноразмерный искусственный нейрон на основе многослойной структуры содержит первый слой металла M1, первый слой изолятора И1, слой хранения заряда СХЗ, второй слой изолятора И2 и второй слой метала М2, при этом первый слой изолятора И1 выполнен из материала с высокой степенью нелинейности вольт-амперной характеристики, причем такой, что сопротивление изолятора И1 резко падает при превышении заданной напряженности электрического поля, а второй слой изолятора И2 представляет собой тонкопленочный материал, характеризующийся возможностью обеспечения соответствующего заданного уровня тока через него для различных направлений протекания тока: из второго слоя металла М2 в слой хранения заряда СХЗ и в противоположном направлении.

Изобретение относится к области распознавания образов и может быть использовано в системах распознавания космических аппаратов по радиолокационной информации. Технический результат - снижение количества вычислений на этапе принятия решения о классе космического аппарата и повышение вероятности правильной классификации космических аппаратов по сильно зашумленным изображениям после проведения процедуры редуцирования.

Изобретение относится к вычислительной технике и может быть использовано в цифровых вычислительных устройствах, а также устройствах для формирования элементов конечных полей GF(2ν). Технический результат заключается в снижении схемных затрат, необходимых на реализацию многовходового сумматора по модулю два.

Изобретение относится к бионике и вычислительной технике и может быть использовано в качестве структурно-функционального элемента искусственных нейронных сетей для моделирования биологических нейронных сетей, а также для построения параллельных нейрокомпьютеров и других вычислительных систем, предназначенных для решения различных прикладных задач, в том числе задач распознавания образов, классификации данных, обработки изображений, математических операций и создания искусственного интеллекта.

Изобретение относится к моделированию нейронов и может быть использовано в нейрокомпьютерах, технических системах на основе нейронных сетей для распознания образов, анализа и обработки изображений. Техническим результатом является обеспечение возможности достижения избирательного распознавания входных объектов без использования весового взвешивания входных сигналов, возможности кодирования входного объекта определенного типа номером канала или номером регистрирующего нейрона, сжатие входной информации, повышение быстродействия, повышение надежности распознавания объектов.

Изобретение относится к моделированию нейронных структур и может быть использовано в нейрокомпьютерах, технических системах на основе нейронных сетей для распознания образов, анализа и обработки изображений.

Изобретение относится к области моделирования нейронных структур и может быть использовано в нейрокомпьютерах, технических системах на основе нейронных сетей для распознания образов, анализа и обработки изображений.

Изобретение относится к моделированию нейронов и может быть использовано в нейрокомпьютерах, технических системах на основе нейронных сетей для распознания образов, анализа и обработки изображений. Техническим результатом является обеспечение возможности достижения избирательного распознавания входных объектов без использования весового взвешивания входных сигналов, возможности кодирования входного объекта определенного типа номером канала или номером регистрирующего нейрона, сжатие входной информации, повышение быстродействия, повышение надежности распознавания объектов.

Группа изобретений относится к средствам формирования изображений. Технический результат заключается в создании устройства распознавания изображений, имеющего чувствительную площадку, непосредственно встроенную в прозрачный или полупрозрачный материал, образующий оптический интерфейс.

Изобретение относится к вычислительной технике и может быть использовано при построении систем обработки информации в нейросетевом базисе, в том числе для распознавания образов (классификации). Техническим результатом является возможность обеспечения многопараметрической классификации.

Изобретение относится к области медицины: в хирургии, онкологии, в частности к способу прогнозирования течения раннего послеоперационного периода у больных с осложнениями рака прямой кишки и средству для его осуществления.

Изобретение относится к вычислительной технике и может быть использовано при создании бесплатформенных инерциальных систем, входящих с состав систем автоматического управления высокоманевренными судами, объектами авиационной техники, изделиями ракетно-космической техники и космическими аппаратами в частности, а также мобильными робототехническими комплексами, особенностью которых является обеспечение работоспособности в экстремальных условиях.

Изобретение относится к области устройств преобразования кода в частоту. Техническим результатом является реализация различных функциональных зависимостей выходной частоты от входного кода и улучшение способности преобразователя корректировать мультипликативную составляющую погрешности датчиков.

Изобретение относится к медицинской кибернетике, бионике, нейроинформатике, в частности к области разработки сетевых систем для моделирования нейрофизиологических процессов, а также к созданию информационно-управляющих устройств и биотехнических комплексов двигательной регуляции.

Изобретение относится к аналогово-цифровым управляющим устройствам и может быть использовано при создании сложных многопараметрических систем автоматического управления различными объектами и технологическими процессами, позволяющих объекту изменять свою реакцию в зависимости от изменения характера внешних влияющих факторов, в системах распознавания образов, в робототехнике, а также для моделирования мозга человека.

Изобретение относится к вычислительной технике и может быть использовано при создании вычислительных средств для систем управления высокоманевренными объектами авиационной и ракетно-космической техники, где требуется быстрое вычисление функций, например тригонометрических, используемых в матричных преобразованиях при решении задач формирования инерциальной системы координат по информации датчиков угловых скоростей, а также при решении задачи сохранения работоспособности вычислителей при изменениях параметров элементов БИС из-за действия ионизирующих излучений естественного или искусственного происхождения.

Изобретение относится к области компьютерных сетей. .

Изобретение относится к нейрокибернетике и может быть использовано в искусственных нейронных сетях при решении различных задач обработки данных, таких как обработка изображений и распознавание образов, предсказание сигналов.

Изобретение относится к вычислительной технике и может быть использовано для построения модулярных нейрокомпьютеров, функционирующих в симметричной системе остаточных классов. .

Изобретение относится к нейрокомпьютерам. .

Изобретение относится к вычислительным модулярным нейрокомпьютерным системам. .

Изобретение относится к нейроподобным вычислительным структурам и может быть использовано в качестве процессора вычислительных систем с высоким быстродействием. .

Изобретение относится к нейрокибернетике и может быть использовано в искусственных нейронных сетях при решении различных задач логической обработки двоичных данных. .

Изобретение относится к вычислительной технике и может быть использовано в модулярных нейрокомпьютерных системах. .

Изобретение относится к кибернетике и может быть использовано в качестве ячейки нейронных сетей. .