Способ изготовления роторов газовых турбин

 

Изобретение относится к турбостроению и может быть использовано в авиастроении, судостроении и других областях. Цель изобретения - повышение прочности и работоспособности роторов с лопатками из трудносвариваемых никелевых жаропрочных сплавов, содержащих 4,1 - 6 мас.% алюминия. Лопатки 1 располагают радиально в зажимном приспособлении. Затем на комли лопаток направляют слой металла 2, после этого освобождают сваренные в венец лопатки из зажимного приспособления и обрабатывают наплавленную поверхность на токарном станке. После этого в зажимном приспособлении устанавливают соосно венец и диск 3 и выполняют соединение венца с диском. Соединение осуществляют электродуговой сваркой в среде защитных газов. Наплавленный слой металла выполняет роль теплового барьера, защищающего лопатки. Изготовление венца лопаток наплавкой позволяет регулировать состав наплавленного слоя, что обеспечивает стойкость против образования в лопатках околошовных термических трещин. 1 ил., 3 табл.

Изобретение относится к турбостроению, а именно к способам изготовления роторов газовых турбин. Целью изобретения является повышение прочности и работоспособности роторов с лопатками из трудносвариваемых никелевых жаропрочных сплавов, содержащих 4,1-6,0 мас. % алюминия, а также повышение точности геометрических размеров роторов и эффективных параметров турбин. Уменьшение концентрации напряжений в участках соединения лопаток друг с другом при наплавке и последующей сварке венца, выполняемой по наплавленному слою, уменьшает протяженность радиальных трещин в шве, возникающих от зазоров между лопатками. Жесткое соединение лопаток уменьшает величину их относительных перемещений при сварке и позволяет повысить точность геометрических параметров ротора. Повышение прочности сварного соединения ротора, его работоспособности и точности геометрических размеров позволяет повысить эффективные параметры турбины. На чертеже приведена схема сварного ротора, изготовленного по предложенному способу. Лопатки 1 располагают радиально по окружности с радиусом R их комлей в зажимном приспособлении. На торцах комлей (шириной В) выполняют > -образную разделку кромок для сварки. Затем на комли направляют слой металла 2, после чего освобождают сваренные в венец лопатки из зажимного приспособления и обрабатывают наплавленную поверхность венца на токарном станке. После этого в зажимном приспособлении устанавливают соосно венец и диск 3 и выполняют соединение венца с диском посредством сварного шва 4. Роторы изготавливают из никелевых жаропрочных сплавов, содержащих алюминий. Лопатки используют литые из сплавов типа ЖС-6 и ЛЖ-1 с содержанием алюминия 4,1-6,0 мас.%, диски штампованные из сплавов типа ХН73МБТЮ с содержанием алюминия до 2 мас.%. Для сварки применяют никелевые сварочные проволоки, не содержащие алюминий типа ХН70 и содержащие 0,75-2,5 мас.% алюминия типа ХН50МВБТЮ и ХН60МВЮ. При изготовлении роторов используют процесс электродуговой сварки в защитной атмосфере аргона или смеси аргона с другими газами. При наплавке венца процесс ведут неплавящимся вольфрамовым электродом с присадкой проволоки. Сварку венца с диском выполняют проволокой либо неплавящимся вольфрамовым электродом с присадкой проволоки. Толщину наплавленного на лопатки слоя и содержание в нем алюминия регулируют технологическими приемами: выбором метода и режима наплавки, подбором присадочных проволок. Аналогичным образом посредством выбора метода и режима сварки регулируют толщину наплавленного слоя венца, который сохраняют нерасплавленным при сварке венца с диском. Для этого лопатки предварительно жестко соединяют в венец наплавкой. Наплавленный слой металла выполняет роль теплового барьера, защищающего лопатки. Наибольший эффект предупреждения образования ликвационных трещин в околошовной зоне лопаток достигается при сохранении наплавленного слоя венца на толщину, предотвращающую нагрев лопаток до температуры подплавления границ зерен в околошовной зоне, которая для никелевых литейных сплавов типа ЖС-6 и ЛЖ-1 составляет 1130оС. При использовании наплавки удобно регулировать состав наплавленного металла в направлении обеспечения удовлетворительной стойкости против образования горячих кристаллизационных трещин и жаропрочности. Одновременно изготовление венца лопаток наплавкой позволяет регулировать состав наплавленного слоя в направлении обеспечения стойкости против образования в лопатках околошовных термических трещин. Для уменьшения жесткости наплавленного слоя его целесообразно выполнять менее прочным, чем лопатки. Для чего можно использовать ограничение в содержании алюминия. Изготовление опытных образцов роторов с лопатками из литейных жаропрочных сплавов с содержанием алюминия 4,1-6,0 мас.% выполняли на макетах серийно изготавливаемого ротора с диаметром комлей лопаток 172 мм и шириной комлей 16,1 мм. Использовали лопатки из сплавов ЖС-6У и ЛЖ-1И, содержание основных легирующих элементов в которых (мас.%) приведено в табл. 1, диски из сплава ХН73МБТЮ (ЭИ 698) и сварочные проволоки ХН70М (ЭП 367), ХН50МВБТЮ (ЭП 648) и ХН60МВЮ (ЧС 40). Данные по наличию трещин приведены в табл. 2. Наплавку венцов макетов выполняли неплавящимся вольфрамовым электродом диаметром 3 мм с присадкой одной из указанных проволок на различных режимах для получения в наплавленном слое различного содержания алюминия. При сварке с диском для всех макетов использовали режим с повышенным тепловым воздействием сварки при повышенной скорости; Iсв=280-300 А, U=20-22 В, V=40 м/ч. Сварку венцов лопаток в макетах N 3, 4 выполняли проволокой ЭП648 с содержанием алюминия 0,96 мас.%. Сварку остальных венцов выполняли проволокой ЧС40 с содержанием алюминия 2,5 мас.%. Качество сварных соединений контролировали рентгеновским просвечиванием, капиллярной дефектоскопией (контроль ЛЮМ-А) и при исследовании микрошлифов. Сварные соединения, у которых толщина сохранившегося наплавленного слоя венца меньше 0,20 мм, имели ликвационные микротрещины в небольшом количестве, обнаруженные только при исследовании микрошлифов. В остальных соединениях с толщиной сохранившегося наплавленного слоя венца 0,20-3 мм ликвационные трещины отсутствовали. Однако в макетах 8, 13, не имевших ликвационных трещин, обнаружены термические микронадрывы, расположенные в околошовной зоне лопаток вдоль линии сплавления. По уровню жаропрочности при 750оС сварные соединения макетов роторов, выполненных предлагаемым способом, равноценны дисковому сплаву ХН73МБТЮ (ЭИ 698) (табл. 3). Эти результаты свидетельствуют о высокой эффективности предложенного способа, в котором для усиления эффекта целесообразно алюминий в наплавленном слое венца ограничить содержанием 0,15-0,95 его содержания в лопатках и сохранять некоторую часть предварительного наплавленного на лопатки слоя металла по всей ширине их комлей. Толщину нерасплавленного слоя целесообразно выбирать в пределах 0,20-3 мм. Увеличение толщины наплавленного слоя повышает трудоемкость, поэтому толщину его следует ограничить 3,5 мм в венце и 3 мм в роторе. П р и м е р. Сварка ротора (N ЗЖС) с лопатками из сплава ЖС-6УНК с содержанием алюминия 6,0 мас.% и диском из сплава ЭИ 698ВД в условиях производства проводилась следующим образом. Комплект лопаток с шириной комля 18,0 мм был собран в зажимном приспособлении. Комли лопаток собирались с натягом, обеспечивающим их плотное прилегание друг к другу. На комлях лопаток, удерживаемых зажимным приспособлением, была проточена кольцевая разделка под наплавку. Методом аргонодуговой сварки неплавящимся вольфрамовым электродом с присадкой проволоки ЭП 367 на всей поверхности торцовой части комлей лопаток наплавили слой металла толщиной 0,9-1,3 мм (средняя толщина 1,1 мм). В средней части комлей толщина слоя была повышена до 1,6 мм с учетом необходимости последующей механической обработки этой части венца для обеспечения точной сборки с диском. Затем полученный венец, в котором собранные с натягом лопатки жестко соединены между собой наплавленным на торцы их комлей слоем металла, освободили от зажимного приспособления и проточили его посадочный диаметр относительно базовой поверхности лопаток. Проточенный под сварку венец лопаток и диск собрали в зажимном приспособлении и сварили соединительным швом, выполненным аргонодуговой сваркой проволокой ЧС 40 на режиме: Uсв=20-22 В; Iсв=210-220 А; Vсв=40 м/ч. После сварки ротор прошел механическую обработку, контроль геометрических размеров, контроль ЛЮМ-А и рентген-контроль. Исследованиями отмечено соответствие ротора требованиям для серийно изготавливаемых роторов (из низкотемпературных железоникелевых сплавов). Отмечено повышение точности геометрических размеров по радиальному смещению лопаток и уменьшение протяженности трещин от зазоров между лопатками. Способ изготовления роторов может быть использован в авиастроении, судостроении, транспортном машиностроении, и других отраслях для газотурбинных двигателей, агрегатов турбонаддува, газоперекачивающих станций и других подобных устройств.

Формула изобретения

СПОСОБ ИЗГОТОВЛЕНИЯ РОТОРОВ ГАЗОВЫХ ТУРБИН, при котором соединение лопаток с диском осуществляют дуговой сваркой, отличающийся тем, что, с целью повышения прочности и работоспособности роторов с лопатками из трудносвариваемых никелевых жаропрочных сплавов, содержащих от 4,1 до 6 мас.% алюминия, а также повышения точности геометрических размеров роторов и эффективных параметров турбин, лопатки предварительно перед сваркой жестко соединяют в венец наплавкой слоя металла на всю ширину торцовой части их комлей.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3

MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Номер и год публикации бюллетеня: 8-2000

Извещение опубликовано: 20.03.2000        




 

Похожие патенты:

Изобретение относится к способам дуговой сварки в среде защитных газов неплавящимся погруженным электродом и может быть использовано в любой отрасли народного хозяйства, связанной со сваркой металлов больших толщин

Изобретение относится к дуговой обработке, в частности к устройствам для плазменной обработки, и может быть использовано для плазменной сварки, наплавки и напыления порошковыми материалами

Изобретение относится к сварке, а именно к конструкции сварочных головок, предназначенных главным образом для сварки изнутри трубчатых элементов, и может быть использовано в строительстве, энергомашиностроении, судостроении и других отраслях народного хозяйства

Изобретение относится к сварке, в частности к горелкам для дуговой сварки неплавящимся электродом в защитных газах

Изобретение относится к сварке и может быть использовано в различных отраслях промышленности в соединениях, собранных с зазором 3,5 мм

Изобретение относится к автоматической дуговой сварке, в частности к способам многослойной сварки стыков со щелевой разделкой с регулированием режимов сварки в зависимости от изменения параметров сечения разделки, и может быть использовано в различных отраслях народного хозяйства, преимущественно в нефтегазовом и химическом машиностроении

Изобретение относится к сварке и наплавке в вакууме и может быть использовано в машиностроении

Изобретение относится к дуговой сварке, преимущественно неплавящимся электродам в защитном газе или микроплазменной сварке, и может быть использовано при изготовлении тонколистовых конструкций с отбортовкой кромок, имеющих сложную форму шва, поверхность с различной кривизной

Изобретение относится к сварке стыковых соединений неплавящимся электродом и может быть использовано во всех отраслях народного хозяйства

Изобретение относится к сварочной технике и предназначено для сварки, главным образом, под водой в среде защитного газа

Изобретение относится к электродуговой сварке плавящимся или неплавящимся электродом в среде защитных газов и предназначено для применения в различных отраслях машиностроения (авиационной, судостроительной, химической и др.) для соединения металлических материалов

Изобретение относится к электродуговой сварке плавящимся или неплавящимся электродом с использованием защитных газов и может найти применение в различных отраслях промышленности для металлических материалов, где применяется сварка в среде защитных газов

Изобретение относится к электродуговой сварке, преимущественно высокоуглеродистых закаливающихся сталей с содержанием углерода 0,55 - 0,9%
Изобретение относится к дуговой сварке в среде гелия и может быть использовано при изготовлении конструкций средней и повышенной толщины из титановых сплавов

Изобретение относится к машиностроению и может быть использовано в оборудовании для дуговой сварки в защитных газах

Изобретение относится к области сварки с использованием камер и может использоваться для резки, сварки, закалки и других технологических операций, которые производятся с помощью факела горячего газа или плазмы

Изобретение относится к электродуговой сварке плавящимся и неплавящимся электродом с использованием защитных газов и может найти применение в различных отраслях промышленности для соединения металлических материалов, где применяется сварка в среде защитных газов

Изобретение относится к сварочному оборудованию, в частности к установкам для автоматической аргонодуговой сварки поворотных стыков в цеховых условиях

Изобретение относится к оборудованию для сварки в среде защитных газов и может найти применение в различных отраслях машиностроения для соединения металлических материалов
Наверх