Способ термической обработки двухфазных титановых сплавов мартенситного класса

 

Изобретение относится к металлургии, в частности к способу термической обработки двухфазных титановых сплавов, и может найти применение в авиационной промышленности, а также в машиностроении. Цель - повышение прочности и долговечности при сохранении пластичности. Сплавы нагревают до температуры на 30-100oC выше температуры полиморфного превращения, выдерживают 0,5-1 ч, охлаждают со скоростью 0,001-0,01oC/c до 550-600oС, после чего осуществляют 5-15-кратное циклирование путем нагрева со скоростью 1-100oС/с от нормальной температуры на 5-15oC ниже первой температуры динамической равнопрочности и -фаз и охлаждения со скоростью 0,03-10oC/c, затем нагревают со скоростью 4-10oC/c до температуры на 20-80oС ниже температуры рекристаллизации a-фазы, выдерживают в течение 0,5-1,5 ч и охлаждают в начале со скоростью 0,05-3oС/с до 400-500oC, далее - на воздухе. Способ обеспечивает повышение механических характеристик на 18-22% при сохранении уровня пластичности. 1 табл.

Изобретение относится к металлургии, в частности к способу термической обработки двухфазных титановых сплавов мартенситного типа, и может найти применение в авиационной промышленности, а также машиностроении. Цель повышение прочности и долговечности при сохранении пластичности. По предложенному способу обрабатывали полуфабрикаты из сплава ВТ23, у которого температура конца полиморфного превращения (Ас3) 920oС,а температура динамической равнопрочности и и --фаз 650oС. П р и м е р 1. Нагрев до 950oС, в 1 ч, охлаждение с Vo 0,005oС/с до температуры 550oC, в 0,5 ч, циклический нагрев до температуры 635oС со скоростью Vн 1oС/с, охлаждение со скоростью Vо 0,03oС/с до нормальной температуры, количество циклов 5, далее нагрев со скоростью Vн 4oС/с до температуры 810oС в 1,5 ч. П р и м е р 2. Нагрев до 950oC, в 1 ч, охлаждение со скоростью Vо 0,005oС/с до температуры 550oС, в 0,5 ч, циклический нагрев до 640oС со скоростью Vн 3oС/с от нормальной температуры, количество циклов 10, далее нагрев со скоростью Vн 4oС/с до температуры 810oС, в= 1,0 ч. П р и м е р 3. Нагрев до 950oС, в 1 ч, охлаждение со Vо 0,005oС/с до температуры 550oС, в 0,5ч, циклический нагрева до температуры 645oС со скоростью Vн 100oC/c, охлаждение со Vо 10oC/c до нормальной температуры, количество циклов 15, далее нагрев со скоростью Vн 4oС/с до температуры 810oС, в 1,5 ч. Обработка по режимам, выходящим за пределы признаков предложенного способа. П р и м е р 4. Нагрев до 950oС, в 1 ч, охлаждение со Vo 0,005oС/с до температуры 550oС, в 0,5 ч, циклический нагрев до температуры 650oС со скоростью Vн 0,5oС/с, охлаждение со скоростью Vо 0,01oС/с до нормальной температуры, количество циклов 4, далее нагрев со скоростью Vн 4oС/с до температуры 810o С, в 2,0 ч. П р и м е р 5. Нагрев до 950oС, в 1 ч, охлаждение со Vo 0,01oС/с до температуры 550oС, в 0,5 ч, циклический нагрев до температуры 630oС со скоростью Vн 120oС/с, охлаждение со скоростью Vo 15oС до нормальной температуры, количество циклов 17, далее нагрев со скоростью Vн 4oС/с до температуры 810oС в 0,4 ч. Результаты определения механических свойств приведены в таблице. Как видно из таблицы, предложенный способ позволяет повысить прочностные свойства на 18-22% при сохранении пластических характеристик на прежнем уровне, при этом скорость роста усталостной трещины замедляется в среднем на 20

Формула изобретения

Способ термической обработки двухфазных титановых сплавов мартенситного класса, включающий нагрев до температуры на 30-100oС выше температуры полиморфного превращения, выдержку в течение 0,5-1 ч, охлаждение со скоростью 0,001-0,01oС/с до температуры 550-600oС, выдержку при этой температуре в течение 0,25-1 ч, нагрев со скоростью 4-10oС/с до температуры на 20-80oС ниже температуры рекристаллизации - фазы, выдержку при этой температуре и последующее охлаждение со скоростью 0,05-3oС/с до 400-500oС, далее на воздухе, отличающийся тем, что, с целью повышения прочности и долговечности при сохранении пластичности, после выдержки при 550-600oС проводят 5-15-кратное циклирование путем нагрева со скоростью 1-100oС/с от нормальной до температуры на 5-15oС ниже первой температуры динамической равнопрочности и b- фаз и охлаждения со скоростью 0,03-10oС/с, а выдержку ниже температуры рекристаллизации -фазы проводят в течение 0,5-1,5 ч.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к металлургии, в частности к способу обработки изделий из двухфазных титановых сплавов, и может найти применение в авиационной промышленности, а также в машиностроении

Изобретение относится к металлургии и может найти применение в машиностроении и авиастроении

Изобретение относится к металлургии, в частности к способам термической обработки листовых сварных соединений псевдо α- и (α+β)-титановых сплавов

Изобретение относится к металлургии, а именно к способам циклической термообработки листовых сварных соединений титановых псевдо-α-сплавов
Изобретение относится к обработке металлов давлением, а именно к кузнечно-штамповочному производству, и может быть использовано для изготовления лопаток газотурбинных двигателей

Изобретение относится к цветной металлургии и может быть использовано при изготовлении трубных заготовок преимущественно из тугоплавких труднодеформируемых металлов, в частности тантала

Изобретение относится к металлургии, преимущественно к термообработке ниобиевых сплавов

Изобретение относится к металлургии и металловедению титановых сплавов, а именно к термической обработке сплавов системы TI-AI-V, и может быть использовано для подготовки структуры перед изотермической штамповкой

Изобретение относится к металлургии, в частности к способам обработки крупногабаритных полуфабрикатов и деталей из двухфазных титановых сплавов, и может найти применение в авиационной технике, а также машиностроении

Изобретение относится к способам обработки сплавов с обратимым фазовым превращением мартенситного типа, обладающих эффектом памяти формы (ЭПФ), и может быть использовано при изготовлении термочувствительных элементов многократного действия

Изобретение относится к металлургии, в частности к термической обработке нагартованных листовых деталей из титана и его сплавов и может быть использовано в авиастроении и машиностроении

Изобретение относится к изготовлению труб и прутков из циркониевых сплавов, используемых в качестве конструкционных материалов в активных зонах атомных реакторов, в аппаратах химической и нефтегазовой промышленности и позволяет устранить наследственную неоднородность слитков из циркониевых сплавов при механической обработке, повышает качество готовых изделий

Изобретение относится к области обработки металлов давлением, а именно к способам подготовки мелкокристаллической глобулярной структуры в полуфабрикатах - и ( + )-титановых сплавов путем интенсивной пластической деформации

Изобретение относится к металлургии, в частности, к способам термической обработки титановых сплавов и может быть использовано при производстве специальных устройств и датчиков

Изобретение относится к области металлургии, в частности к сплавам титана, обладающим высокими демпфирующими свойствами и хорошей пластичностью при механической обработке для использования их в качестве конструкционных материалов

Изобретение относится к продуктам на основе циркония и способам их получения

Изобретение относится к способам получения в сплавах титана инварных свойств

Изобретение относится к изготовлению труб и трубных полуфабрикатов из циркониевых бинарных, а также многокомпонентных сплавов

Изобретение относится к области металлургии, к прокатному производству и предназначено, в частности, для изготовления изделий из циркониевых и титановых сплавов

Изобретение относится к изготовлению полуфабрикатов из отходов титана и его сплавов
Наверх