Весы

 

Использование: весоизмерительная техника. Сущность изобретения: весы содержат коромысло в виде полой сферы 1 с гибкими подвесами чашек 3. Полая сфера 1 установлена в посадочной чаше 4 и снабжена оптическим датчиком 11 ее углового перемещения. К выходу оптического датчика 11 подключен блок 14 преобразования углового перемещения полой сферы в напряжение. Под одной из чашек 3, по крайней мере, дно которой выполнено металлическим, расположен электрод 13, соединенный с выходом блока преобразования углового перемещения полой сферы в напряжение. 2 ил.

Изобретение касается техники взвешивания масс.

Известны весы, в которых опора и коромысло выполнены в виде полой сферы, помещенной в чашу с жидкостью.

Известны также весы, содержащие коромысло, выполненное в виде полой сферы с гибкими подвесами чашек, установленной в посадочной чаше, сообщенной с узлом для подачи жидкости, и оптический датчик углового перемещения полой сферы.

Недостатком изобретения является большое время измерения, обусловленное необходимостью подбора комбинации гирь, соответствующих измеряемому весу, низкая точность из-за ошибок оператора при измерении угла.

Целью изобретения является повышение точности и быстродействия.

Поставленная цель достигается тем, что в весы введены подключенный к выходу оптического датчика блок преобразования углового перемещения полой сферы в напряжение и соединенный с его выходом электрод, расположенный под одной из чашек, по крайней мере, дно которой выполнено металлическим.

На фиг. 1 показана конструкция предлагаемого устройства; на фиг. 2 - вариант этой конструкции.

Предлагаемые весы включают полую сферу 1, гибкий подвес чашек 2, чашки весов 3, посадочную чашу 4, поршень 5, ручку 6. На сфере 1 для статического съема углового положения нанесена площадка 7. Элементы конструкции центрирования полой сферы 1 не показаны. Оптический датчик 11 расположен над площадкой 7. Сфера 1 погружена в жидкость 12. Под одной чашкой весов расположен введенный электрод 13, который компенсирует груз, размещенный на второй чашке. Блок преобразования углового перемещения полой сферы в напряжение 14 подключен входом к выходу оптического датчика 11, а выходом - к электроду 13. Выход устройства 14 подключен к индикатору 15. Чашки весов выполнены металлическими или металлизированной является по крайней мере плоская сторона детали для компенсирующего груза.

Весы работают следующим образом. При установке измеряемого груза на чашку весов сфера 1 поворачивается. Сигнал на выходе датчика угла 11 становится отличным от нуля, что приводит к возникновению напряжения на выходе устройства 14 и электроде 13. Поскольку потенциал чашки 3 мал (это достигается введением ленточного токоподвода с малым тяжением, либо за счет электрического контакта через подвес 2 со сферой 1) разность напряжений между электродом 13 и чашкой 3 приводит к возникновению силы, действующей на чашку 3, которая из-за действия обратной связи через датчик 11 компенсирует вес измеренного груза, помещенного на другую чашку.

Величина компенсирующей силы со стороны электрода 13 определяется напряженностью электрического поля, которая в случае синусоидального напряжения постоянной частоты пропорциональна току, протекающему через электрод 13. Индикатором 15 индицируется величина этой напряженности, т. е. компенсирующей силы. Таким образом, введение электрода и устройства преобразования позволяет исключить ошибки оператора при списывании показаний с оптического датчика, проводить уравновешивание груза автоматически, что повышает точность весов и уменьшает время измерения.

На фиг. 2 электрод 13 выполнен раздельным. Он состоит из двух половинок 16 и 17, разделенных изоляционным промежутком. К половинкам 16 и 17 подключены резисторы 18, 19 и выходы диодных мостов на элементах 20-23 и 24-27. Диодные мосты подключены ко вторичной обмотке трансформатора 28, первичная обмотка которого соединена с выходом усилителя переменного напряжения 29. Модулятор 30 подключен выходом к входу усилителя 29, а входами - к генератору 31 и через усилитель постоянного тока 32 - к выходу оптического датчика 11.

Схема на фиг. 2 работает следующим образом.

Сигнал датчика 11 об угловом положении сферы 1 проходит через элементы 28. . . 30 и 32, усиливается по уровню и преобразуется в сигнал переменного тока. Проходя через диодные мосты на элементах 20-27, он преобразуется в разнополярные напряжения одинаковой величины. Между проводящим основанием чашки 3 и половинками электродов 16, 17 действуют силы электрического поля, вызывающие поворот сферы 1 до тех пор, пока сигнал датчика 11 не станет мал. При использовании в усилителе 32 интегрирующих звеньев сигнал датчика 11 после уравновешивания груза силами электрического поля оказывается равным нулю. При реализации устройства 14 по схеме на фиг. 2 индикатор 15 может быть подключен либо к одной из половинок электродов 16, 17, либо между ними, либо к трансформатору 28. В качестве индикатора 15 может использоваться вольтметр, в частности цифровой. Возможен вариант устройства 14 без диодных мостов. В этом случае вторичная обмотка трансформатора 28 подключается последовательно с элементами 16, 17. При этом в качестве индикатора 15 целесообразно использовать амперметр переменного тока, который подключен последовательно с электродами 16, 17. Отметим, что возможны и другие варианты использования устройства 14, в частности на основе бестрансформаторных усилителей.

Формула изобретения

ВЕСЫ, содержащие коромысло, выполненное в виде полой сферы с гибкими подвесами чашек, установленной в посадочной чаше, сообщенной с узлом для подачи жидкости, и оптический датчик углового перемещения полой сферы, отличающиеся тем, что, с целью повышения точности и быстродействия, в них введены подключенные к выходу оптического датчика блок преобразования углового перемещения полой сферы в напряжение и соединенный с его выходом электрод, расположенный под одной из чашек, по крайней мере дно которой выполнено металлическим.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Весы // 1814033

Весы // 1811589

Весы // 1793255

Весы // 1760359

Изобретение относится к технике измерения и счета, предназначенной для испытания конструкционных материалов на ползучесть, и может использоваться при испытании деталей машин на износ Цель изобретения-повышение точности расчетов за счет обеспечения возможности линеаризации кривых ползучести посредством искажения (аморфирования) координат

Изобретение относится к измерительной технике, в частности к весам и весовым дозаторам

Изобретение относится к весоизмерительной технике

Изобретение относится к измерительным устройствам и может быть использовано для взвешивания малых масс

Изобретение относится к весоизмерительной технике и может быть использовано для градуировки и поверки конвейерных весов

Изобретение относится к силоизмерительной технике и может быть использовано при производстве и испытаниях весоизмерительных и силоизмерительных приборов

Изобретение относится к области весовой техники и направлено на повышение надежности, чувствительности, безотказности, ремонтопригодности

Изобретение относится к области весоизмерительной техники и направлено на увеличение надежности, безотказности, ремонтопригодности при эксплуатации и снижении себестоимости

Изобретение относится к измерительной технике, в частности к способам многоопорного взвешивания, и может быть использовано в различных весах платформенного типа. Способ состоит том, что на эталонной силовоспроизводящей установке нагружают многокомпонентные тензорезисторные датчики веса, каждый из которых содержит основной мост тензорезисторов, предназначенный для измерения веса, и дополнительные мосты тензорезисторов, предназначенные для измерения механических влияющих величин. При этом нагружении измеряют сигналы основных и дополнительных мостов тензорезисторов каждого датчика веса, определяют характеристики преобразования основных и дополнительных мостов тензорезисторов, для каждого многокомпонентного тензорезисторного датчика веса определяют функции влияния сигналов дополнительных мостов тензорезисторов на погрешность преобразования основного моста тензорезисторов, и предельно допускаемые значения сигналов дополнительных мостов тензорезисторов, при которых погрешность сигнала основного моста тензорезисторов данного многокомпонентного тензорезисторного датчика веса не выходит за допускаемые пределы. На месте эксплуатации судят об измеряемом весе по сумме сигналов основных мостов тензорезисторов всех многокомпонентных тензорезисторных датчиков веса при определенном заранее условии предельно допускаемого значения сигнала дополнительного моста тензорезисторов, при которых погрешность сигнала основного моста тензорезисторов данного многокомпонентного тензорезисторного датчика веса не выходит за допускаемые пределы. Технический результат заключается в повышении точности взвешивания и достоверного определения межповерочного интервала для весов. 5 ил.
Наверх