Способ получения высокотемпературного сверхпроводящего материала bi2sn2can-1cuno2n+1

 

Использование: для получения сверхпроводящих фаз Bi-2212 и Bi-2223 методом твердофазного синтеза. Сущность ия: готовят смесь из Bi2O3 , SrCO3 и CuO, соответствующую составу 2: 2:0:1 по катионам Bi, Sr, Ca, Cu, а также смесь CaCO3 и CuO, соответствующую составу 1:1 по катионам Ca и Cu, спекают первую смесь при температуре 800°С в течение 2 ч, а вторую - при 1000°С в течение 8 ч в аргоне, затем после закалки на воздухе обе смеси смешивают, перетирают, а спекание ведут при температуре 830 - 850°С в атмосфере аргона в течение 12 - 14 ч, после чего закаливают на воздухе.

Изобретение относится к технологии синтеза высокотемпературных сверхпроводниковых материалов и может быть использовано для получения сверхпроводящих фаз В1-2212 и В1-2223 методом твердофазного синтеза.

Известны способы получения фаз В1-2212 и В1-2223 методом твердофазного синтеза [1, 2]. Они заключаются в приготовлении стехиометрического состава по обычной керамической технологии и последующем долговременном отжиге при определенных температурах, в результате которого образуются фазы В1-2201, В1-2212 и В1-2223. Недостатком данных способов является невозможность получения гомогенных по фазе образцов.

Известен также способ получения фазы В1-2223 по керамической технологии, который заключается в том, что спрессованный образец отжигают при температуре 840оС в течение 400 ч [3].

Основным недостатком этого способа является то, что при этих режимах отжига и для этого состава образуется совокупность фаз - низкотемпературная В1-2213 и высокотемпературная В1-2223.

Целью изобретения является упрощение технологического процесса и получение образцов В1-2212 или В1-2223, гомогенных по фазе.

Это достигается тем, что при способе, включающем приготовление шихты исходного состава из окислов Bi2O3, CuO и карбонатов SrCO3, SrCO3, предварительное спекание на воздухе и синтез при 830-850оС проводят в течение 20-24 ч из компонент Bi2Sr2CuO6 и CaCuO2, взятых в стахиометрическом соотношении в атмосфере инертного газа.

Новизна изобретения заключается в использовании двух компонент для синтеза, одна из которых предварительно отжигается в атмосфере аргона.

Предлагаемая совокупность признаков в известной литературе не обнаружена.

Способ осуществляется следующим образом: используется исходный состав шихты BiSr2CuO6, который спекается при 800оС в течение 2 ч с последующей закалкой на воздухе, и CaCuО2, который спекается в аргоне из CaCO3 и CuO при 1000оС в течение 8 ч. Затем обе части системы смешиваются в одну, перетираются и отжигаются при температуре 830-850оС в течение 12-14 ч.

П р и м е р 1.Готовят смесь компонент 2,33 г Bi2O3, 1,48 г SrCO3 и 0,40 г CuO, соответствующую составу 2:2:0:1 по катионам Bi, Sr, Ca, Cu, а также смесь 0,5г CaCO3 и 0,4 г CuO, соответствующую составу 1:1 по катионам Ca, Cu, и в тиглях из Al2O3 выдерживают в муфельной печи соответственно при 800оС в течение 2 ч на воздухе и при 1000оС в течение 8 ч в аргоне. Затем после закалки на воздухе обе смеси смешивают в одну, перетирают и вносят в печь при температуре 840оС в атмосфере аргона. После выдержки 12-14 ч образец закаляют на воздухе.

Рентгенографическое исследование полученных керамических образцов, проведенное методом порошка на дифрактометре ДРОН-3М ( Cu-Ka) показывает, что они на 95% состоят из фазы Bi-2212 Tск=88--90К.

П р и м е р 2. Образец готовят так же, как в примере 1, за исключением того, что процессы синтеза проводят в воздушной среде. После таких условий содержание фаз Bi-2201 и Bi-2212 становится равным и составляет примерно 50%, Ткс=58-60К.

Благодаря тому, что получение CaCuO2 и взаимодействие компонент Bi2Sr2CuO6 и CaCuO2 происходят в аргоне возможно получение до 95% фазы Bi-2212 или Bi-2223. Ускорение процесса обусловленно непродолжительным предварительным спеканием (порядка 8 часов) и синтезом, продолжающимся около 12-14 ч. Общее время, затраченное на спекание и синтез, составляет порядка 20 часов (в аналоге около 400 ч).

По сравнению с прототипом ускоряется проведение процесса и получаются однофазные образцы.

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДЯЩЕГО МАТЕРИАЛА Bi2Sr2Can-1CunO2n+4(n= 2 или 3), включающий приготовление шихты и ее спекание, отличающийся тем, что, с целью получения однофазных образцов и сокращения времени получения сверхпроводящего материала, для приготовления шихты готовят смесь из Bi2O3, SrCO3 и CuO, соответствующую составу 2 : 2 : 0 :1 по катионам Bi, Sr, Ca, Cu, а также смесь CaCO3 и CuO, соответствующую составу 1 : 1 по катионам Ca и Cu, спекают первую смесь при 800oС в течение 2 ч, а вторую - при 1000oС в течение 8 ч в атмосфере аргона, затем после закалки на воздухе обе смеси смешивают и перетирают, а спекание ведут при 830 - 850oС в атмосфере аргона в течение 12 - 14 ч, после чего закаливают на воздухе.



 

Похожие патенты:

Изобретение относится к способам получения микроэлектронных толстопленочных элементов, применяемых в гибридных интегральных схемах, СВЧ-устройствах, чувствительных элементах датчиков, и может быть использовано при изготовлении сверхпроводящих квантовых интерференционных датчиков и других высокотемпературных сверхпроводящих (ВТСП) толстопленочных элементов (ТПЭ), чувствительных к различным воздействиям

Изобретение относится к сверхпроводящей технике и может быть использовано при изготовлении сверхпроводящих устройств микроэлектроники, приемников ИК-излучения и сильноточных устройств

Изобретение относится к получению сверхпроводящих материалов, в частности высокотемпературных сверхпроводников, и может быть использовано для создания сверхбыстродействующих ЭВМ нового поколения, сверхчувствительных датчиков электронных приборов, детекторов СВЧ, криомагнитных экранов и др
Изобретение относится к материаловедению, в частности к сверхпроводящим материалам, и может быть использовано для получения высокотемпературной сверхпроводящей (ВТСП) керамики

Изобретение относится к технологии получения сверхпроводящих материалов типа RBa2 Cu3O7-x, где R = Y, La, Nd, Eu, Gd, может быть использовано для изготовления керамики, монокристаллов и пленок со сверхпроводящими свойствами

Изобретение относится к получению сверхпроводящего материала в режиме горения и позволяет упростить процесс получения однородного по содержанию кислорода целевого материала

Изобретение относится к сверхпроводящей микроэлектронике

Изобретение относится к криогенной микроэлектронике и может быть использовано при изготовлении электронных приборов и устройств, работа которых основана на сверхпроводимости и эффекте Джозефсона, с рабочей температурой вблизи температуры кипения жидкого азота и характеристиками, неуступающими характеристикам аналогов, работающих при температуре 4,2 K

Изобретение относится к криогенной микроэлектронике и может быть использовано для изготовления электронных приборов и устройств, работающих в сверхвысокочастотном диапазоне частот, с уровнем собственных шумов, приближающимся к квантовому порогу, работа которых основана на явлении высокотемпературной сверхпроводимости и эффекте Джозефсона, с рабочей температурой вблизи температуры кипения жидкого азота и характеристиками, неуступающими характеристикам аналогов, работающих при температуре 4,2 К

Изобретение относится к области измерительной техники, а точнее к способам измерения параметров сверхпроводящих материалов, в частности силы пиннинга
Изобретение относится к области получения сверхпроводников, сверхпроводящих композиций и проводников на их основе

Изобретение относится к микроэлектронике и может быть использовано при производстве интегральных схем и гибридных интегральных схемах для изготовления сверхпроводящих квантовых интерференционных детекторов и других высокотемпературных сверхпроводящих толстопленочных элементов
Изобретение относится к технологии получения монокристаллов сверхпроводниковых соединений для производства устройств сверхпроводниковой электроники
Изобретение относится к сверхпроводниковой технике, в частности к формированию структуры типа SIS
Наверх