Способ производства листового проката

 

Изобретение относится к металлургии, в частности к производству проката ответственного назначения методом термомеханической обработки. Технический результат изобретения заключается в возможности получения малоперлитной стали, обладающей высокой прочностью, пластичностью и хладостойкостью с высокими значениями низкотемпературной вязкости стали зоны термического влияния после сварки. Способ производства листового проката включает получение заготовок из стали определенного химического состава, аустенизацию, предварительную и окончательную деформации с суммарной степенью 50-80%, охлаждение проката при температуре 760-900С со скоростью 10-60С/с до температуры 300-20С, повторный нагрев до температуры 590-740С с выдержкой 0,2-3,0 мин/мм и окончательное охлаждение на воздухе до температуры окружающей среды. Предлагаются варианты прокатки и термообработки проката. 4 з.п.ф-лы. 2 табл.

Изобретение относится к металлургии, в частности к производству проката ответственного назначения методом термомеханической обработки.

Известен способ производства листового проката из низколегированной стали, включающей нагрев выше Аr3 прокатку, подстуживание, прокатку в интервале Аr3 Аr1 с частными обжатиями 14-30% за проход и суммарной степенью деформации 59-83% и последующее охлаждение на воздухе [1] Недостатком известного способа является низкая хладостойкость металла после обработки. Наиболее близким по технической сущности и достигаемому результату является способ производства листового проката, включающий выплавку стали, формирование заготовки, аустенизацию, деформацию ее в контролируемом режиме с реверсивными частными обжатиями при суммарной степени деформации 50 80% и последующее охлаждение до температуры окружающей среды [2] Основными недостатками прототипа являются низкий комплекс пластических и вязких свойств металла. Целью изобретения является получение малоперлитной стали, обладающей высокой прочностью, пластичностью и хладостойкостью с высокими значениями низкотемпературной вязкости стали зоны термического влияния после сварки.

Это достигается тем, что в способе производства листового проката, включающем получение заготовки из стали, аустенизацию, деформацию ее в контролируемом режиме с реверсивными частными обжатиями при суммарной степени деформации 50-80% и последующее охлаждение до температуры окружающей среды, заготовку получают из стали следующего состава, мас. углерод 0,05-0,15; марганец 1,2-2,0; кремний 0,2-0,6; ниобий 0,01-0,10; титан 0,005-0,03; алюминий 0,01-0,10; хром 0,03-0,50; никель 0,03-0,50; медь 0,03- 0,50; азот 0,005-0,020; железо остальное, после окончания процесса деформации прокат при температуре 760-900oС охлаждают со скоростью 10-60oС/с до 300-20oС, а затем производят нагрев до 590-740oС с выдержкой 0,2-3,0 мин/мм и окончательным охлаждением на воздухе до температуры окружающей среды.

Кроме того, после окончания процесса, деформации и охлаждения проката до температуры окружающей среды осуществляют его нагрев до 890-980oС с выдержкой 0,5-3,0 мин/мм и последующим охлаждением до температуры окружающей среды со скоростью 10-60oС/с, а затем производят повторный нагрев до 590-740oС с выдержкой 0,2-3,0 мин/мм и окончательным охлаждением на воздухе до температуры окружающей среды.

Кроме того, заготовку получают из стали, дополнительно содержащей ванадий 0,01 0,15 мас. и/или кальций 0,0005 0,005 мас.

Кроме того, окончательную деформацию проводят перпендикулярно направлению продольной оси заготовки.

Экспериментальные испытания предлагаемого способа показали, что выбранные режимы и предлагаемый состав стали обеспечивают получение наряду с высокой прочностью высокую низкотемпературную вязкость как основного металла, так и зоны термического влияния после варки.

П р и м е р. Сталь была выплавлена в двухванной печи и после внепечного рафинирования разлита на тринадцатитонные слитки. Химический состав стали был следующим, мас. углерод 0,12; марганец 1,6; кремний 0,4; ниобий 0,05; титан 0,01; алюминий 0,05; хром 0,2; никель 0,2; медь 0,2; азот 0,01; железо остальное. Сталь может дополнительно содержать ванадий в количестве 0,1 мас. и/или кальций в количестве 0,003 мас. Слитки подвергали аустенизации при 1250oС с продолжительностью нагрева 4 ч и прокатке на слябимге на заготовки. Прокатку на лист 14 мм производили в реверсивном режиме. Температура нагрева составляла 1180oС. Температура завершения предварительной деформации была 960oС. Окончательную деформацию начинали при 860oС и заканчивали при 800oС. Окончательную деформацию проводили перпендикулярно продольной оси заготовки. Суммарная степень деформации составила 75% После окончания процесса деформации прокат охлаждали со скоростью 30oС/с до 150oС, а затем нагревали до 650o С с выдержкой 1,5 мин/мм и окончательно охлаждали на воздухе до температуры окружающей среды.

Возможен вариант, когда прокат после окончания процесса деформации и его охлаждения до температуры окружающей среды подвергали нагреву до 940oС с выдержкой 1,5 мин/мм и последующим охлаждением до температуры окружающей среды со скоростью 30oС/с, а затем проводили повторный нагрев до 650oС с выдержкой 1,5 мин/мм и окончательное охлаждение на воздухе до температуры окружающей среды.

Испытания механических свойств производили на поперечных образцах. Испытания на статическое растяжение осуществляли на плоских пятикратных образцах, а на ударную вязкость на образцах Шарпи при -20oС и Менаже при -60oС.

Механические свойства полученных листов (толщина 14 мм) приведены в табл.1.

Из листов были сварены трубы диаметром 1220 мм. Механические свойства основного металла и в околошовной зоне приведены в табл.2.

Формула изобретения

1. Способ производства листового проката, включающий получение заготовки из стали, аустенизацию, деформацию ее с реверсивными частными обжатиями при суммарной степени деформации 50 80% и охлаждение проката до температуры окружающей среды, отличающийся тем, что заготовку получают из стали следующего состава, мас.

Углерод 0,05 0,15 Марганец 1,2 2,0 Кремний 0,2 0,6 Ниобий 0,01 0,1 Титан 0,005 0,03 Алюминий 0,01 0,1
Хром 0,03 0,5
Никель 0,03 0,5
Медь 0,03 0,5
Азот 0,005-0,02
Железо Остальное
после окончания процесса деформации прокат при 760 900oС охлаждают со скоростью 10 60 град./c до 300 20oC, а затем производят нагрев до 590 740oС с выдержкой 0,2 3,0 мин/мм и окончательно охлаждают на воздухе до температуры окружающей среды.

2. Способ по п.1, отличающийся тем, что дополнительно осуществляют его нагрев до 890 980oС с выдержкой 0,5-3,0 мин/мм и последующим охлаждением до температуры окружающей среды со скоростью 10-60oС/с, а затем производят повторный нагрев до 590-740oС с выдержкой 0,2-3,0 мин/мм и окончательным охлаждением на воздухе до температуры окружающей среды.

3. Способ по любому из п. 1 или 2, отличающийся тем, что заготовку получают из стали, дополнительно содержащей ванадий 0,01-0,15 мас. и/или кальций 0,0005-0,005 мас.

4. Способ по любому из пунктов 1-3 отличающийся тем, что на последней стадии деформацию производят с приложением к заготовке усилия перпендикулярно направлению продольной оси заготовки.

РИСУНКИ

Рисунок 1

PD4A - Изменение наименования обладателя патента Российской Федерации на изобретение

(73) Новое наименование патентообладателя:
Открытое акционерное общество "Уральская сталь" (RU)

Извещение опубликовано: 20.05.2006        БИ: 14/2006



 

Похожие патенты:
Изобретение относится к металлургии, конкретнее к производству проката ответственного назначения методом термомеханической обработки

Изобретение относится к металлургии, в частности к способам термической обработки листов магнитопроводов из электротехнической изотропной стали

Изобретение относится к металлургии, а именно к способам производства высокопрочных горячекатаных листов из малоуглеродистых низколегированных сталей, сматываемых после прокатки в рулон

Изобретение относится к горячей прокатке полос и может быть использовано на металлургических предприятиях, имеющих в своем составе широкополосовой стан горячей прокатки

Изобретение относится к области металлургии, конкретнее к термомеханической обработке инструментальных сталей, и может быть использовано при изготовлении листов для дисковых пил холодной резки проката

Изобретение относится к области изготовления ленты или листа

Изобретение относится к установкам для термообработки плоских деталей
Изобретение относится к металлургии, конкретнее к производству проката ответственного назначения методом термомеханической обработки

Изобретение относится к металлургии, к составам среднеуглеродистых легированных сталей высокой прочности и пластичности, а также к изделиям, выполненным из них, и может быть использовано при производстве высоконагруженных конструктивных элементов и изделий, в том числе упаковочных поясов для обвязки хлопка, искусственных волокон, пряжи, пиломатериалов и металла, упругих лент измерительного инструмента (рулетки)

Изобретение относится к черной металлургии , преимущественно к производству горячекатаного рулонного поднята из сталей с содержанием углерода 0,5-1,2%

Изобретение относится к металлургии , в частности к технологии получения холоднокатаных полос из малоуглеродистых сталей, применяемых для бандажей кинескопов цветных телевизионных приемников

Изобретение относится к прокатному производству и может быть использовано в цехах горячей прокатки, оснащенных непрерывным и полунепрерывным станками для изготовления полосы

Изобретение относится к прокатному производству и может быть использовано при получении электролитически луженой жести

Изобретение относится к черной металлургии, в частности к прокатному производству

Изобретение относится к черной металлургии, а именно к изготовлению слябов и блюмов из слитков хромистой ферритной стали

Изобретение относится к области термообработки стального проката
Наверх