Способ управления процессом производства концентрированного оксида азота (ii)

 

Изобретение относится к области химической промышленности и может быть использовано в производстве концентрированного оксида азота II для получения гидроксиламинсульфата или азотной кислоты. Управление процессом производства концентрированного оксида азота II каталитическим парокислородным окислением аммиака производится путем регулирования расхода аммиака и кислорода, подаваемых вместе с водяным паром через смеситель в реактор парокислородного окисления аммиака, по содержанию оксида азота II в целевом продукте. При этом расход кислорода дополнительно регулируют по содержанию азотной кислоты в конденсате, выделенном после реактора конверсии при охлаждении пробы реакционной смеси до 20-40oС, а процесс парокислородного окисления аммиака осуществляют при минимальном содержании азотной кислоты в этом конденсате. Это дает возможность сократить потери исходного сырья и увеличить выход целевого продукта. 1 табл., 4 ил.

Предполагаемое изобретение относится к области химической промышленности и может быть использовано в производстве концентрированного оксида азота II для получения гидроксиламинсульфата (ГАС) или азотной кислоты.

Наиболее близким по технической сущности и достигаемому эффекту является способ управления процессом производства концентрированного оксида азота II каталитическим парокислородным окислением аммиака с последующим гидрированием избыточного кислорода конвертированного газа, конденсацией водяных паров абсорбционной очисткой, выделением оксида азота II и отхода - азотнокислого конденсата. Известным процессом управляют путем регулирования расходов аммиака и кислорода, подаваемых вместе с водяным паром через смеситель в реактор парокислородного окисления аммиака. Регулирование осуществляют, задавая соотношение кислород-аммиак так, чтобы содержание оксида азота II в целевом продукте составляло 93% об./1/.

По сравнению с предыдущим известным способом управления описанный выше позволяет сократить потери оксида азота II с азотной кислотой.

Недостатки указанного способа заключаются в том, что не обеспечивается оптимальное соотношение кислород-аммиак. Это приводит к перерасходу кислорода, так как избыточный кислород окисляет оксид азота II до оксида азота IV, а это приводит к потере целевого продукта.

В основу изобретения поставлена задача сократить потери исходного сырья и увеличить выход целевого продукта - концентрированного оксида азота II, - усовершенствовав способ управления процессом его производства путем регулирования расхода кислорода по содержанию азотной кислоты конденсате, выделенном после реактора конверсии аммиака при охлаждении пробы реакционной смеси до 20 - 40oC, при этом процесс парокислородного окисления аммиака осуществляют при минимальном содержании азотной кислоты в пробе конденсата.

В способе предусмотрены следующие отличия: - регулирование расхода кислорода по содержанию азотной кислоты в конденсате, выделенном после реактора конверсии аммиака при охлаждении пробы реакционной смеси до 20 - 40oC, - осуществление процесса парокислородного окисления аммиака при минимальном содержании азотной кислоты в пробе конденсата.

Заявляемое техническое решение отличается от прототипа тем, что обеспечивает оптимальное соотношение за счет регулирования расхода кислорода по содержанию азотной кислоты в конденсате, выделенном после реактора при охлаждении пробы реакционной смеси до 20 - 40oC, при этом осуществляют процесс парокислородного окисления аммиака при минимальном содержании азотной кислоты в пробе конденсата.

Анализ содержания азотной кислоты в конденсате, выделенном после реактора конверсии аммиака, в зависимости от расхода кислорода в реактор позволяет выявить минимальное содержание азотной кислоты в конденсате, соответствующее действительно оптимальному соотношению кислород-аммиак.

Предлагаемый способ управления обеспечивает эффективное использование сырья (аммиак, кислород), сокращая его потери с отходом производства - азотнокислым конденсатом, тем самым увеличивая выход целевого продукта и улучшая его качество.

Дополнительным техническим результатом заявляемого решения является то, что обеспечение оптимального соотношения кислород-аммиак снижает нагрузку по кислороду на реактор гидрирования, тем самым увеличивая срок службы катализатора гидрирования кислорода.

Указанные отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию изобретения "новизне".

Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данной и смежной областей техники и, следовательно, обеспечивают заявляемому техническому решению соответствие критерию "существенные отличия".

Заявляемый способ управления процессом производства концентрированного оксида азота II иллюстрируется схемой установки производства (фиг. 1), номограммами оптимизации процесса конверсии аммиака (фиг. 2, 3) и кривой изменения содержания азотной кислоты в конденсате от температуры его охлаждения при технических соотношениях кислород-аммиак в диапазоне 1,3 - 1,42 (фиг. 4).

Установка для получения концентрированного оксида азота II включает в себя трубопроводы подачи пара, кислорода, аммиака для образования реакционной газовой смеси в смесителе 1, реактор 3 каталитического парокислородного окисления аммиака, смеситель 5 прореагировавшей газовой смеси с водородом, реактор 7 каталитического гидрирования непрореагировавшего кислорода, конденсатор 9 для отвода образовавшегося конденсата, газодувку 11, абсорбер 12, насос 16. Трубопроводы 4, 6, 8, 10 предназначаются для передачи конвертированного газа от аппарата к аппарату, трубопровод 13 - для выдачи продукта - конвертированного оксида азота II.

Установка также снабжена трубопроводами: 2 - подачи реакционной смеси, 19 - подачи водорода, 14, 15, 17, 18 - циркуляции и выдачи азотнокислого конденсата в качестве отхода (фиг. 1).

На схеме показаны аналитические точки и указаны технологические параметры, с помощью которых регулируется расход кислорода и соответственно соотношение кислород-аммиак.

На фиг. 2 представлена характерная кривая изменения содержания азотной кислоты (ось ординат) в конденсате от соотношения реагентов кислород-аммиак (ось абсцисс) с четко выраженным оптимумом. Выявленный характер зависимости положен в основу предлагаемого способа управления процессом, позволяющий с высокой степенью точности регулировать расход кислорода по содержанию азотной кислоты в конденсате.

На фиг. 3 представлены характерные кривые изменения степени конверсии аммиака в оксид азота II - к(%), содержания оксида азота II в целевом продукте - N 0 (% об.), степени использования аммиака - исп(%) от соотношения реагентов кислород-аммиак Степень конверсии аммиака - величина, характеризующая эффективность процесса в реакторе парокислородного окисления аммиака, определяется отношением содержания оксида азота II в газе после реактора к содержанию аммиака на входе в реактор (в исходной смеси).

Степень использования аммиака - величина, характеризующая эффективность производства концентрированного оксида азота II, определяется отношением содержания оксида азота в целевом продукте к содержанию аммиака в исходной реакционной смеси.

Указанный характер изменения содержания оксида азота II в газе от соотношения кислород-аммиак положен в основу известного способа управления процессом производства концентрированного оксида азота II по прототипу.

Сопоставительный анализ предлагаемого способа управления и по прототипу показывает более высокую параметрическую чувствительность предлагаемого способа и его эффективность, обеспечивающие сокращение потерь исходного сырья и увеличение выхода целевого продукта.

На фиг. 4 представлено влияние температуры охлаждения конденсата на содержание азотной кислоты в нем. Выявлено, что охлаждение конденсата до 20 - 40oC обеспечивает полное кислотообразование и стабилизацию состава азотнокислого конденсата в широком интервале соотношений кислород-аммиак.

В известном способе (по прототипу) управления процессом производства концентрированного оксида азота II поддерживают соотношение технологических потоков кислород-аммиак в пределах 1,30 - 1,42, регулируя расход кислорода по содержанию оксида азота II в целевом продукте (не менее 93% об.), расход пара при этом поддерживают в соотношении к аммиаку, как 4,9 : 1. Дозировку водорода в реактор гидрирования кислорода осуществляют по температуре в слое катализатора гидрирования, не превышая 450oC.

Предлагаемый способ управления процессом производства концентрированного оксида азота II каталитическим окислением аммиака осуществляют следующим образом.

Дозируют пар, аммиак и кислород в смеситель, поддерживая соотношение пар - аммиак = 4,9 : 1, кислород - аммиак = 1,33 - 1,38 : 1.

Полученную смесь направляют в реактор каталитического парокислородного окисления аммиака. После реактора отбирают пробу реакционной смеси, охлаждают ее до 20 - 40oC и в полученном конденсате определяют содержание азотной кислоты. Вышеупомянутую операцию отбора пробы и анализ осуществляют по крайней мере 3 раза при разном расходе кислорода в пределах заданного соотношения. ПО результатам анализа регулируют расход кислорода таким образом, чтобы он соответствовал минимальному содержанию азотной кислоты в пробе конденсата (см. фиг. 2, 3) и соответственно максимальному выходу оксида азота II по его количеству и содержанию.

В дальнейшем технологический процесс осуществляют, поддерживая расход кислорода на установленном по результатам анализа уровне.

Дозировку водорода в реактор гидрирования кислорода осуществляют, как и в прототипе, по температуре в слое катализатора гидрирования, не превышая 450oC.

Примеры осуществления способа управления процессом производства концентрированного оксида азота II : Пример 1. При соотношении кислород-аммиак 1,32 : 1, обозначенном на номограмме 1,32 (точка 1, фиг. 3) концентрация оксида азота II в газе N 0 = 86% об.; степень конверсии аммиака в оксид азота II к = 87%; степень использования аммиака исп = 79% (точка 1, фиг. 3). Точке 1 (фиг. 2) соответствует повышенное содержание азотной кислоты в конденсате. В этом случае имеет место отклонение в соотношении кислород : аммиак 1,32) от нормы технологического режима (1,33 - 1,38 : 1).

Пример 2(по прототипу). При = 1,37, содержание N 0 = 93% об., к = 95%; исп = 86,5% (точка 2, фиг. 3). В этом случае соотношение кислород : аммиак соответствует норме технологического режима но степень использования аммиака исп понижена по сравнению с максимально возможной. По предлагаемому способу управления точка 3, фиг. 2 соответствует повышенному содержанию азотной кислоты в конденсате, что свидетельствует о неоптимальности соотношения кислород - аммиак и необходимости регулирования расхода кислорода.

Пример 3 (предлагаемое техническое решение). При 1,33 концентрация N 0 = 93% об.; к = 95%; исп = 89% (точка 3, фиг. 3). Точке 3 (фиг. 2) соответствует минимальное содержание азотной кислоты в конденсате. Соотношение кислород : аммиак находится в пределах нормы технологического режима. При этом концентрация N 0 равна 93% об., что соответствует норме технологического режима по этому показателю. Степень конверсии аммиака в оксид азота II к = 95%, т.е. на том же уровне, что и в прототипе. Однако в этом случае степень использования аммиака исп = 89% максимальна, то есть сокращаются до минимума потери исходного сырья с отходом производства азотнокислым конденсатом, следовательно, увеличивается выход целевого продукта - концентрированного оксида азота II.

Кривые на фиг. 2 и фиг. 3 могут менять свое положение в зависимости от изменения ряда факторов, оказывающих влияние на процесс, таких, как активность катализатора в реакторе, чистота исходного сырья, качество смешения реагентов и т. д., однако характер кривых с единой абсциссой соответствует экспериментальным значениям вышеуказанных параметров процесса, сохраняется, что обуславливает универсальность предлагаемого способа управления.

Пример 4. На фиг. 4 показано изменение содержания азотной кислоты при различных значениях от температуры охлаждения пробы конвертированного газа. Как видно, в заявляемом диапазоне значений температуры охлаждения (20 - 40oC) достигается полное выделение азотной кислоты из конвертированного газа.

Показатели процесса, представленные в примерах, для наглядности сведены в таблицу.

Как видно из таблицы, основные технико-экономические преимущества предлагаемого способа управления заключаются в сокращении потерь исходного сырья и увеличении выхода целевого продукта.

Таким образом, сущность изобретения заключается в том, что предлагаемая совокупность отличительных признаков способа управления процессом производства концентрированного оксида азота II, включающая регулирование расхода кислорода по содержанию азотной кислоты в конденсате, выделенном после реактора при охлаждении пробы до 20 - 40oC, и осуществление процесса парокислородного окисления аммиака при минимальном содержании азотной кислоты в конденсате позволяет сократить потери исходного сырья и увеличить выход целевого продукта - оксида азота II.

Источники информации 1. Постоянный технологический регламент N 71 цеха гидроксиламинсульфата производства капролактама, Минудобрений, ВО "Союзазот", Черкасское ПО "Азот", 1988, с. 17 - 27 (прототип).

Формула изобретения

Способ управления процессами производства концентрированного оксида азота (II), включающий каталитическое парокислородное окисление аммиака путем регулирования расхода кислорода, подаваемого вместе с аммиаком и водяным паром через смеситель в реактор конверсии, отличающийся тем, что расход кислорода регулируют по содержанию азотной кислоты в конденсате, выполненном после реактора при охлаждении пробы реакционной смеси до 20-40oC, при этом процесс парокислородного окисления аммиака осуществляют при минимальном содержании азотной кислоты в пробе конденсата.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5



 

Похожие патенты:

Изобретение относится к устройствам стабилизации концентрации неоднородных жидких сред, содержащих взвеси твердых частиц, способных к кристаллизации при определенных температурах

Изобретение относится к технике автоматического контроля и управления реакционными процессами как по расходу реагента, так и по автоматическому прекращению его подачи по окончании реакции с применением термохимического метода и может быть использовано в большинстве химико-технологических процессов, где реакции сопровождаются выделением или поглощением тепла

Изобретение относится к технике измерения и регулирования состава высокотемпературных газовых сред, в частности к устройствам для регулирования газового состава в камерах сгорания двигателей, печах химико-термической обработки, печах стекольной промышленности и др., где в качестве первичного преобразователя используется твердоэлектролитный датчик

Изобретение относится к системам автоматического регулирования величины PH в воде, подаваемой насосными станциями для орошения с/х культур, и может быть использовано на гидромелиоративных системах, использующих машинный подъем воды на орошение

Изобретение относится к устройствам для регулирования и стабилизации физико-химических параметров водных сред /например, величины PH/ с использованием электрических средств и может быть использовано для поддержания в заданных пределах величины PH или окислительно-восстановительного потенциала газового состава водной среды в рыбоводстве, аквариумистике, гидропонике, при проведении научно-исследовательских работ, в лабораторных и промышленных установках

Изобретение относится к регулированию процесса измельчения в роторной дробилке и может применяться в промышленности строительных материалов

Изобретение относится к устройствам для регулирования технологического процесса путем направленного изменения дисперсного состава частиц в оптически прозрачных жидких или газообразных средах

Изобретение относится к технологии производства концентрированных оксидов азота из аммиака и кислорода и может быть использовано преимущественно в производствах органических продуктов, в которых указанные газы используются в качестве сырья

Изобретение относится к способам конверсии аммиака на двухступенчатых каталитических системах и может быть использовано в производствах азотной и синильной кислот, а также гидроксиламинсульфата

Изобретение относится к нитям, включающим по крайней мере один нитевидный элемент, соединениям нитей, особенно в виде ткани, трикотажа или войлока, применению этих соединений в качестве катализатора, к катализатору и устройству для улавливания с целью рекуперации драгоценных металлов

Изобретение относится к оборудованию при производстве азотной кислоты, в частности к сеткам для улавливания платиноидов при каталитическом окислении аммиака

Изобретение относится к промышленному производству азотной кислоты, более конкретно к катализатору для окисления аммиака до окислов азота на основе окислов неблагородных металлов
Изобретение относится к сетке трехмерного плетения для каталитических реакций и может быть использовано при получении азотной кислоты на стадии окисления аммиака

Изобретение относится к производству азотной и синильной кислот и касается устройства платиноидного катализатора для окисления исходных компонентов

Изобретение относится к химической технологии и может быть использовано в производстве гидроксиламинсульфата (ГАС) и в других производствах, потребляющих оксиды азота

Изобретение относится к области неорганической химии, в частности к производству азотной кислоты, и касается стадии окисления аммиака

Изобретение относится к способу окисления аммиака с использованием оксидного катализатора сотовой структуры и способу приготовления катализатора

Изобретение относится к области химической промышленности и может быть использовано в производстве концентрированного оксида азота II для получения гидроксиламинсульфата или азотной кислоты

Наверх