Способ определения постоянных времени механических и электромеханических колебательных систем при наличии интегрирующего усилителя в цепи измерения

 

Способ предназначен для построения математической модели сложной механической или электромеханической системы с распределенными параметрами и может быть использован для анализа нестационарных процессов в механических, электромеханических и электрических системах. Способ основан на возбуждении колебаний системы гармоническим воздействием в диапазоне ее собственных частот и регистрации амплитудно-фазовой частотной характеристики измеряемого кинематического параметра. Для каждой степени свободы системы фиксируют характерные частоты, соответствующие экстремумам действительной и мнимой составляющих кинематического параметра. По этим частотам рассчитывают постоянные времени и коэффициенты усиления. Особенностью способа является то, что в качестве кинематического параметра используют интеграл от выходного сигнала колебательной системы, а передаточную функцию системы представляют в виде интеграла суммы передаточных функций колебательных звеньев. Способ позволяет исключить случайную помеху с нулевым средним значением и тем самым повысить точность определения постоянной времени динамической системы. 2 ил.

Изобретение относится к измерительной технике и может быть, например, использовано для построения математической модели сложной механической или электромеханической системы с распределенными параметрами, что необходимо для анализа нестационарных процессов в механических, электромеханических и электрических системах.

Заявляемое изобретение направлено на решение задачи, заключающейся в повышении точности измерений и унификации аппаратных средств, необходимых для экспериментального снятия амплитудно-фазо-частотных характеристик (АФЧХ) с целью построения по ней математической модели эквивалентной электромеханической системы.

Известен способ определения коэффициентов демпфирования, основанный на обработке АФЧХ (см. Патент РФ N2093808, МПК6 G 01 M 7/02, 20.10.1997), в соответствии с которым возбуждают колебания системы гармоническим воздействием в диапазоне ее собственных частот, измеряют кинематический параметр колебаний, регистрируют амплитудно-фазовую частотную характеристику измеряемого кинематического параметра, для каждой степени свободы фиксируют характерные частоты, соответствующие экстремумам действительной и мнимой составляющих кинематического параметра, и по ее частотам рассчитывают относительные коэффициенты демпфирования. В качестве кинематического параметра колебаний измеряют скорость перемещения, фиксируют характерные частоты соответствующие максимальным значениям действительной и мнимой составляющих скорости перемещения, а относительный коэффициент демпфирования рассчитывают по формуле: К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что известный способ оказывается слабозащищенным от помех.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ определения относительных коэффициентов демпфирования механических колебательных систем, в котором определяются коэффициенты демпфирования по перемещению по формуле: где мrакс и мrин - соответствующие частоты максимальному значению действительной и минимальному значению мнимой составляющего тона амплитудно-фазовой частотной характеристики; r - относительный коэффициент демпфирования для данного тона амплитудно-фазовой частотной характеристики, принятой за прототип (см. авт. свид. СССР N1206713, кл. G 01 R 3/00, 1985 г.).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что известный способ оказывается так же слабозащищенным от помех.

Сущность изобретения заключается в следующем. Изобретение решает задачу определения коэффициентов усиления и постоянных времени динамических систем, представляющих собой произведение интегрирующего и колебательных звеньев, по их АФЧХ, например таких, как сложная электрическая цепь, когда ее внутреннее строение неизвестно.

Технический результат позволяет практически полностью исключать случайную помеху с нулевым средним значением и этим самым повысить точность определения постоянных времени динамической системы.

Указанный технический результат при осуществлении изобретения достигается тем, что способ определяет коэффициенты усиления и постоянные времени динамических систем, включающие возбуждение колебаний системы гармоническим воздействием в диапазоне ее собственных частот, измеряют кинематический параметр колебаний, регистрируют амплитудно-фазовую частотную характеристику измеряемого кинематического параметра, для каждой степени свободы фиксируют характерные частоты, соответствующие экстремумам действительной и мнимой составляющих кинематического параметра, и по ее частотам рассчитывают постоянные времени и коэффициенты усиления.

Особенность способа заключается в том, что в качестве кинематического параметра используют интеграл от выходного сигнала колебательной системы.

Сущность заключается в том, что получена новая формула для определения коэффициента демпфирования по экстремальным точкам АФЧХ для динамических систем, представляющих собой произведение интегрирующего и колебательных звеньев.

Рассмотрим передаточную функцию: Положив p=j, получим:
Выделим действительную и мнимую части этой передаточной функции:

Исследуем мнимую часть на экстремум. Для этого найдем производную:

Приравниваем производную к нулю при

Рассмотрим числитель этого выражения:

После некоторых математических преобразований получим следующее выражение:

Обозначим 2 = . Тогда получим:

Преобразуем это выражение:

В результате получим новую формулу для определения коэффициента демпфирования по экстремальным точкам АФЧХ для динамических систем, представляющих собой произведение интегрирующего и колебательных звеньев:

где 1imax и 1i - частоты, соответствующие экстремальным значениям мнимой и вещественной части АФЧХ, построенной по формуле (3).

Коэффициенты усиления находим по формулам:
Ki = -AiT1i21i, (5)
где Ai, - размер петли АФЧХ по вещественной оси.

Кроме того, особенность способа заключается в том, что измерения можно производить на той же самой аппаратуре, что и в случае использования АФЧХ по перемещению, всего лишь включая в цепь измерения интегрирующее звено, используя формулу (3).

На фиг. 1 показана АФЧХ по перемещению для вертикально-фрезерного станка модели 654, которая описывается формулой:

(см. Ю. Н. Санкин. "Динамические характеристики вязко-упругих систем с распределенными параметрами" - Изд-во саратовского университета, 1977, с. 250. На фиг. 2 - АФЧХ для той же системы, при наличии интегрирующего звена в цепи измерителя, то есть АФЧХ, построенная по формуле:

Для определения постоянных времени T2i в формуле (4), используют соотношение:

Формулы для построения АФЧХ на фиг. 1 и на фиг. 2 различны, хотя их применение в обоих случаях по затратам труда и точности практически эквивалентны, однако применение АФЧХ для систем, представляющих собой произведение интегрирующих и колебательных звеньев предпочтительнее, так как практически полностью исключена случайная помеха с нулевым средним значением, и тем самым повышается точность определения постоянной времени динамической системы.

Проверка способа проводилась при снятии АФЧХ вертикально-фрезерного станка модели 654 (см. фиг. 2). Например, для одного из образцов станка значения характерных частот равны:

Размеры витков АФЧХ по горизонтали: A1 = 2.01, A2 = 2.83, A3 = 0.154. Постоянные времени T2i и T1i, полученные по формулам (7) и (4) соответственно:
T21 = 6.3510-3 с, T11 = 0.6510-3 с
T22 = 0.2910-2 с, T12 = 0.29410-3 с
T23 = 0.10310-2 с, T13 = 0.110-3 с
В результате получаем ранее приведенную функцию упругой системы станка согласно формуле (6).

Определение передаточной функции может производиться автоматически на аппаратуре, описанной в авторском свидетельстве СССР N1206713, кл. G 01 R 3/00, 1986, включая в измерительную цепь интегрирующее звено.


Формула изобретения

Способ определения постоянных времени механических и электромеханических колебательных систем при наличии интегрирующего усилителя в цепи измерения, по которому возбуждают колебания системы гармоническим воздействием в диапазоне ее собственных частот, измеряют кинематический параметр колебаний, регистрируют амплитудно-фазовую частотную характеристику измеряемого кинематического параметра, для каждой степени свободы фиксируют характерные частоты, соответствующие экстремумам действительной и мнимой составляющих кинематического параметра, и рассчитывают по этим частотам постоянные времени и коэффициенты усиления, отличающийся тем, что в качестве кинематического параметра используют интеграл от выходного сигнала колебательной системы, берут передаточную функцию

для которой постоянные времени T1i, T2i и коэффициенты усиления Ki определяют по формулам


Ki= -AiT1i21i,
где 1imax и 1i - частоты, соответствующие экстремальным значениям мнимой и вещественной части амплитудно-фазовой частотной характеристики, построенной по вышеприведенной формуле для W(p);
Ai - размер петли амплитудно-фазовой частотной характеристики по вещественной оси.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к виброизмерительный технике и может быть использовано при контроле и диагностике роторного оборудования

Изобретение относится к области измерительной техники и может быть использовано для вибрационных испытаний пролетных строений мостовых конструкций

Изобретение относится к измерительной технике и может быть использовано для построения математической модели эквивалентной упругой системы металлорежущего станка в зоне резания, что необходимо для разработки систем автоматического управления резанием, а так же для анализа динамических явлений при резании

Изобретение относится к испытаниям на вибрацию и может быть использовано при испытаниях изделий на случайную одномерную вибрацию для уменьшения уровня мощности паразитной боковой вибрации при заданном уровне мощности в вертикальном направлении
Изобретение относится к технике прочностных испытаний, а именно к способам испытаний на вибропрочность и долговечность объектов авиационного ракетного вооружения, и может быть использовано также для испытаний различных машин и оборудования, подвергающихся при эксплуатации комплексному воздействию статической и вибрационной нагрузок

Изобретение относится к технике прочностных испытаний, а именно к установкам для испытания рабочих колес турбомашин на прочность

Изобретение относится к области измерений динамических параметров упругих систем со сложной конструкцией, имитируемой многомерными пространственно ориентированными колебательными моделями с многоканальным входом, подверженных воздействию случайных вибронагрузок, приложенных в опорных точках конструкции, и может быть использовано для определения в широкополосном диапазоне частот резонансных характеристик упругих систем с несимметрично размещаемыми во внутриблочных конструкциях элементами упругой подвески, упругой подвески многомоторной установки, распределенных несущих конструкций из упругих элементов, многоканальных систем групповой амортизации бортового оборудования

Изобретение относится к области эксплуатации зданий и сооружений

Изобретение относится к измерительной технике и может быть, например, использовано для построения математической модели сложной механической или электромеханической системы с распределенными параметрами, что необходимо для анализа нестационарных процессов в механических, электромеханических и электрических системах

Изобретение относится к станкостроению, в частности к построению математической модели сложной механической или электромеханической системы с распределенными параметрами для анализа нестационарных процессов в механических, электромеханических и электрических системах

Изобретение относится к вспомогательному оборудованию для испытания изделия на вибрацию в трех взаимно перпендикулярных положениях

Изобретение относится к обработке резанием на токарных станках, в частности, гибких заготовок

Изобретение относится к механическим испытаниям объектов ракетно-космической техники

Изобретение относится к устройствам для крепления лопаток турбомашин на вибрационных установках при определении частот собственных колебаний, испытании на усталость и может быть использовано в энергомашиностроении

Изобретение относится к испытательной технике, в частности к способам для вибрационных испытаний

Изобретение относится к техническим средствам измерений и может быть использовано для измерения параметров вибраций различных конструкций, вращающихся деталей, а также смещений, скоростей и ускорений на основе компьютерной обработки измеренных значений

Изобретение относится к технике динамических испытаний изделий, в частности для испытаний узлов летательных аппаратов
Наверх