Способ охлаждения турбогенератора

 

Изобретение относится к области электротехники и энергомашиностроения и может быть использовано при производстве и эксплуатации турбогенераторов и иных нуждающихся в охлаждении электрических машин. Техническая задача данного изобретения состоит в энерго- и ресурсосбережении при производстве и эксплуатации турбогенератора, а также в повышении надежности их работы. Сущность изобретения состоит в том, что согласно данному способу охлаждение турбогенератора газообразной средой осуществляют отвод тепла от тепловыделяющих элементов турбогенератора. Причем в качестве охлаждающей среды используют природный газ с температурой (-30°С) - (+20°C), который под избыточным давлением напрямую через вентиляционную сеть турбогенератора подают к горелкам топок, и осуществляют при его движении отвод тепла от тепловыделяющих элементов конструкции турбогенератора.

Изобретение относится к области энергомашиностроения и может быть использовано при производстве и эксплуатации турбогенераторов и иных нуждающихся в охлаждении электрических машин.

Известны способы охлаждения турбогенераторов циркулирующим в замкнутом контуре газообразными воздухом, техническим водородом (97% водорода и 3% воздуха) и чистым водородом [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967. С. 19-22, С. 70-81, С. 111-117].

Недостатками всех известных способов охлаждения турбогенераторов являются уменьшение вырабатываемой ими мощности из-за недостаточного охлаждения тепловыделяющих элементов их конструкции (статора, обмоток статора, ротора и др.) и выброс в окружающую среду отводимого от них тепла, количество которого может достигать 5% от вырабатываемой мощности. При использовании способов необходимы теплообменники для охлаждения газообразных воздуха, технического водорода или чистого водорода, вентиляторы для их циркуляции внутри турбогенератора и насосы для перекачивания воды, затраты энергии на их привод, что усложняет и утяжеляет конструкцию турбогенератора, делает его эксплуатацию менее надежной и менее длительной, более сложной и дорогостоящей.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является способ охлаждения турбогенератора газообразным чистым водородом [Титов В. В. , Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967. С. 21, 74-82, 111-117].

Он получил самое широкое распространение в современном турбогенераторостроении и состоит в следующем. Внутри турбогенератора с помощью вентилятора организуется циркуляция находящегося под избыточным давлением газообразного чистого водорода. При своем движении газообразный чистый водород омывает тепловыделяющие элементы конструкции турбогенератора и нагревается. В настоящее время все турбогенераторы выполняются с замкнутым циклом охлаждения, так что нагревшийся газообразный чистый водород направляется с помощью уже указанных выше вентиляторов в трубчатые теплообменники, которые почти всегда встраиваются в корпус статора. Газообразный чистый водород омывает снаружи трубки теплообменников, отдает тепло движущейся внутри трубок воде, охлаждается и возвращается в вентиляционную сеть турбогенератора на охлаждение статора, обмоток статора и ротора и др.

Недостатками способа охлаждения турбогенератора газообразным чистым водородом являются уменьшение вырабатываемой им мощности из-за недостаточного охлаждения тепловыделяющих элементов конструкции (статора, обмоток статора, ротора и др. ) и выброс в окружающую среду отводимого от этих элементов тепла. При использовании газообразного чистого водорода необходимы теплообменники для его охлаждения, вентиляторы для циркуляции газообразного чистого водорода внутри турбогенератора и насосы для перекачивания воды, затраты энергии на их привод, что усложняет и утяжеляет конструкцию турбогенераторов, делает их эксплуатацию менее надежной и менее длительной, более сложной и дорогостоящей.

Расчеты интенсивности теплообмена при турбулентном течении в вентиляционной сети турбогенератора основываются на том, что величина коэффициента теплоотдачи при одинаковых диаметрах охлаждающих каналов и скорости движения охладителя пропорциональна комплексу где и - коэффициенты теплопроводности и кинематической вязкости охладителя; Pr - число Прандтля для охладителя [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967. С. 847].

Используя формулу (I), получаем, что для газообразных воздуха, технического водорода и чистого водорода величины соотносятся как 1:1,3:1,44, т. е. применение газообразного чистого водорода дает увеличение коэффициента теплоотдачи на 44% по сравнению с воздушным охлаждением и на 10,8% - по сравнению с охлаждением техническим водородом [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967, с. 75]. Однако количество тепла q, отводимое с единицы площади поверхности за единицу времени, характеризующее эффективность способа охлаждения, определяется не только коэффициентом теплоотдачи , но и величиной разности между температурой поверхности тела и температурой охлаждающей среды, т.к. величина q рассчитывается по формуле q = (tпов-tохл), (2) где q - плотность теплового потока; tпов и tохл - температура поверхности и температура охлаждающей среды соответственно [Михеев М.А., Михеева И. М. Основы теплопередачи. - М.: Энергия. - 1973. С. 67].

В газообразном чистом водороде, который применяют для охлаждения турбогенераторов, содержатся пары воды и если температура поверхности трубок теплообменников-охладителей ниже температуры точки росы, то пары воды конденсируются и капельки влаги вносятся циркулирующим газообразным чистым водородом в вентиляционную сеть турбогенератора. Чтобы избежать это опасное явление, во внутрь трубок охладителей газообразного чистого водорода подают теплую воду и тогда температура их наружной поверхности будет выше точки росы влаги в водороде.

Охладители газообразного чистого водорода для турбогенераторов рассчитываются на температуру входящей воды 33oC, причем перегрев ее в газоохладителе составляет 5-7oC [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л. : Энергия, 1967, С. 57]. При способе охлаждения газообразным чистым водородом его температура в вентиляционной сети турбогенератора повышается на 20-25oC [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967, С. 54].

Так как средняя температура воды в теплообменнике-охладителе равна [(33+7)+33] /2= 36,5oC, а минимальная разность температуры воды и газообразного чистого водорода в нем не менее 5oC, то в самом благоприятном режиме температура газообразного чистого водорода на входе в турбогенератор равна 36,5+5= 41,5oC. Отсюда следует, что даже при минимальном подогреве в 20oC на выходе из турбогенератора температура газообразного чистого водорода равна 41,5+20=61,5oC, а средняя его температура составляет tохл = (41,5 + 61,5) = 51,5oC.

Вследствие этого температура статора, обмоток статора и ротора и др. большая и уменьшается вырабатываемая мощность турбогенератора.

Применение газообразного чистого водорода в системе охлаждения турбогенератора достаточно опасно, т. к. концентрационный предел воспламенения газообразного чистого водорода в воздухе лежит в широком диапазоне от 4% до 74% [Хзмалян Д. М., Каган Я.А. Теория горения и топочные устройства. - М.: Энергия. - 1976. С. 139].

Задача, на решение которой направлено заявляемое изобретение, - энерго- и ресурсосбережение при производстве и эксплуатации турбогенераторов, повышение длительности и надежности их работы.

Поставленная задача решается тем, что в способе охлаждения турбогенератора газообразной средой, по которому осуществляют отвод тепла от тепловыделяющих элементов его конструкции, в отличие от прототипа в качестве охлаждающей среды используют природный газ с температурой (-30oC)- (+20oC), который под избыточным давлением напрямую подают через вентиляционную сеть турбогенератора к горелкам топок.

Пример конкретной реализации способа.

Конкретная реализация способа такова: под избыточным давлением напрямую через вентиляционную сеть турбогенератора к горелкам топок подают природный газ с температурой (-30oC)-(+20oC) и осуществляют при его движении отвод тепла от тепловыделяющих элементов конструкции турбогенератора (корпус статора, обмотки статора и ротора и др.).

Расчеты по формуле (I) дают для природного газа коэффициент теплоотдачи на 25,7% меньшим, чем при использовании прототипа. Но этот недостаток природного газа компенсируется тем, что в подаваемом на промышленные предприятия природном газе практически нет паров воды. В любом случае точка росы влаги в пункте сдачи природного газа предприятиями Газпрома РФ ниже его температуры [ГОСТ 5542-87 Газы горючие природные для промышленного и коммунально-бытового назначения. Технические условия. - М.: Изд-во стандартов. - 1987. С. 2, п. 1.2.].

Поэтому температура природного газа перед его подачей в вентиляционную сеть турбогенератора и его средняя температура tохл в этой сети может поддерживаться низкой, намного меньшей, чем в прототипе: при температуре природного газа (-30oC)-(+20oC) и минимальном его подогреве в вентиляционной сети на 20oC средняя температура tохл равна (-20oC)-(+30oC) вместо 51,5oC в прототипе. Вследствие этого применение природного газа существенно увеличивает количество тепла, отводимого им от охлаждаемых элементов конструкции турбогенератора, по сравнению с прототипом: в формуле (2) для подсчета величины q сомножитель на 25,7% меньше, а сомножитель tпов - tохл на 150-400% больше, чем в прототипе. При этом температура статора, обмоток статора и ротора и др. становится меньше и увеличивается вырабатываемая турбогенератором мощность. Кроме того, тепло, воспринятое от них природным газом, не выбрасывается в окружающую среду, а вносится в топку котельного агрегата и там полезно используется.

Достичь низкой температуры tохл природного газа очень легко, т.к. он поступает на газораспределительные пункты теплоэлектростанций с избыточным давлением 1,2 и 0,6 МПа, а необходимое его избыточное давление перед горелками топок должно быть равным от 5 до 70 кПа [Роддатис К.Ф. Котельные установки. - М.: Энергия, 1977. С. 155]. Снижение давления газа перед турбогенератором приводит и к снижению его температуры.

Применение природного газа для охлаждения турбогенератора существенно снижает опасность возникновения взрыва и развития пожара при аварии по сравнению с прототипом, поскольку природный газ менее склонен поддерживать горение в смеси с воздухом: концентрационный предел воспламенения природного газа в воздухе лежит в узком диапазоне от 5 до 15% [ГОСТ 5542-87 Газы горючие природные для промышленного и коммунально-бытового назначения. Технические условия. - М.: Изд-во стандартов. - 1987. С. 2, п. 1.3.2].

Таким образом, предлагаемое изобретение обеспечивает энерго- и ресурсосбережение при производстве и эксплуатации турбогенераторов, повышение надежности и ресурса их работы, т.к. при использовании способа охлаждения турбогенераторов природным газом и его подаче напрямую через турбогенератор к топливным горелкам увеличивается вырабатываемая мощность и полезно используется выделяющееся при работе турбогенератора тепло, отпадает потребность в теплообменниках-охладителях, в вентиляторах и водяных насосах и в затратах энергии на их привод, а также уменьшаются затраты на эксплуатацию.

Формула изобретения

Способ охлаждения турбогенератора газообразной средой, по которому осуществляют отвод тепла от тепловыделяющих элементов его конструкции, отличающийся тем, что в качестве охлаждающей среды используют природный газ с температурой (-30oC) - (+20oC), который под избыточным давлением напрямую через вентиляционную сеть турбогенератора подают к горелкам топок, и осуществляют при его движении отвод тепла от тепловыделяющих элементов конструкции турбогенератора.



 

Похожие патенты:

Изобретение относится к области электротехники и касается особенностей эксплуатации электрических машин, в частности снижения влагосодержания газа, используемого для охлаждения турбогенераторов или их консервации в период длительного простоя или останова

Изобретение относится к областям электротехники, электроэнергетики и электромашиностроения, в частности к генераторам с водородным охлаждением, и предназначено для улучшения эксплуатационных характеристик турбогенератора, повышения их КПД и безопасности на электростанциях

Изобретение относится к электротехнике

Изобретение относится к электромашиностроению

Изобретение относится к электромашиностроению, в частности к электрическим машинам постоянного тока с аксиальной вентиляцией

Изобретение относится к электромашиностроению

Изобретение относится к электромашиностроению

Изобретение относится к электромашиностроению

Изобретение относится к способу и устройству для быстрого сброса давления в установке с, по меньшей мере, первой и второй частью корпуса, причем первая часть корпуса в нормальном состоянии содержит атмосферу водорода при повышенном давлении, которая отделена от внутреннего пространства второй части корпуса, причем при отказе водородного уплотнения избыточное давление водорода сбрасывают через линию быстрого спуска

Изобретение относится к генерации электрического тока системой магнитов и, в частности, касается генерации с помощью вращения непрерывного ряда магнитов через группу кольцеобразно размещенных катушек

Изобретение относится к области электротехники, а именно к роторам турбогенераторов с непосредственным газовым охлаждением обмотки возбуждения 1, проводники которой 1а, 1b, 1с, 1d расположены в пазах 2 поковки 3 ротора, закрытых пазовыми клиньями 4

Изобретение относится к электротехнике и электромашиностроению и позволяет упростить конструкцию и обеспечить высокий уровень коэффициента полезного действия

Изобретение относится к электромашиностроению и позволяет улучшить тепловое состояние активных частей статора электрической машины

Изобретение относится к электромашиностроению и позволяет улучшить тепловое состояние активных частей статора электрической машины

Изобретение относится к области электромашиностроения и конструкции машин с форсированным охлаждением и позволяет снизить потери на вентиляцию ротора, повысить коэффициент полезного действия

Изобретение относится к электромашиностроению, а именно, к конструкции электрических машин с формированным газовым охлаждением, например турбогенераторов

Изобретение относится к области электротехники и энергомашиностроения и может быть использовано при производстве турбогенераторов и иных нуждающихся в охлаждении электрических машин
Наверх