Способ масс-спектрометрического изотопного анализа

Использование: область измерительной техники. Способ включает подготовку проб, регистрацию и измерение масс-спектров анализируемых веществ. Подготовку образцов исследуемого вещества для анализа осуществляют путем преобразования углерода в фуллереновые молекулы, а при масс-спектрометрических измерениях регистрируют отношения интенсивностей пиков в характеристических молекулярных масс-спектрах фуллеренов, после чего по формулам биномиального распределения множества значений измеряемых величин рассчитывают распространенность изотопа 13С. Технический результат - повышение чувствительности измерений. 1 табл., 2 ил.

 

Предлагаемое изобретение относится к области измерительной техники и может быть использовано при исследовании биохимических процессов для определения изотопного состава углерода.

Известен способ измерения изотопного состава анализируемых веществ, включающий подготовку проб, регистрацию и измерение масс-спектров анализируемых веществ, расчет изотопного состава каждой из компонентов по полученным масс-спектрам (патент РФ №2181197, МПК G 01 N 21/64, публикация БИ №10/2002 г., от 10.04.02. г.). Образцы для анализа берутся обычно в виде чистого углерода или его простых соединений: СО, CO2, при этом измерения изотопного состава углерода, как правило, не отличаются высокой точностью.

К недостаткам аналога относится недостаточно высокие чувствительность и точность определения изотопного состава анализируемого вещества для случая присутствия в анализируемых пробах значительного множества различных изотопов.

Известен в качестве наиболее близкого к заявляемому по технической сущности способ масс-спектрометрического изотопного анализа, включающий подготовку проб, регистрацию масс-спектров анализируемых веществ и измерение масс-спектров анализируемых веществ, расчет изотопного состава каждого из элементов по полученным масс-спектрам этих элементов (заявка РФ №2000117927, МПК G 01 N 23/00, публ. БИ №17/02 от 20.06.02 г.).

Однако использование известного способа не позволяет проводить измерения изотопного состава углерода и его вариаций в том числе и в фуллеренах при достаточно высокой чувствительности и сравнительно невысоких погрешностях измерений.

Задачей авторов предлагаемого изобретения является разработка способа масс-спектрометрического изотопного анализа, обеспечивающего возможность измерения изотопного состава углерода и его вариаций в том числе и в фуллеренах, повышение точности за счет уменьшения погрешности измерений.

Новый технический результат, достигаемый при использовании предлагаемого способа, заключается в обеспечении возможности измерения изотопного состава углерода и его вариаций в том числе и в фуллеренах, в повышении чувствительности и в уменьшении погрешности измерений.

Указанные задача и новый технический результат достигаются тем, что в известном способе масс-спектрометрического изотопного анализа веществ, включающем подготовку проб, регистрацию и измерение масс-спектров анализируемых веществ, расчет изотопного состава каждого из элементов по полученным масс-спектрам, в соответствии с предлагаемым способом подготовку образцов исследуемого вещества для анализа осуществляют путем преобразования углерода в фуллереновые молекулы, а при масс-спектрометрических измерениях регистрируют отношения интенсивностей пиков в характеристических молекулярных масс-спектрах фуллеренов, после чего по формулам 1÷4, полученным из закона биномиального распределения, рассчитывают распространенность изотопа 13С:

где С0, C1, С2 и т.д. - интенсивности изотопных пиков для k=0, 1, 2, и т.д. соответственно;

n и k - соответственно количества атомов углерода 12С и 13С в молекуле фуллерена;

р - распространенность изотопа 13С, отн.ед.

Сущность предлагаемого способа поясняется следующим образом.

Первоначально проводят подготовку проб - получение молекул фуллеренов.

Пробы для анализа подготавливают в виде растворов фуллеренов, которые посредством микропипетки наносят на ионизатор твердофазного источника ионов (ИИ). Пробы готовят путем преобразования углерода в фуллереновые молекулы, в составе которых в качестве образцов для анализа используют фуллереновые углеродные образования С60, C70 и т.п.

Подготовленные пробы направляют на этап измерений, который осуществляют на масс-спектрометре, где анализируют статистически необходимое количество проб.

При регистрации характеристических молекулярных масс-спектров в пробах на основе образцов фуллеренов измеряют отношения интенсивностей изотопных пиков.

Интенсивность каждого изотопного массового пика в характеристическом молекулярном масс-спектре фуллерена соответствует вероятности его образования, которая может быть рассчитана по закону биномиального распределения. В условиях предлагаемого способа с учетом результатов экспериментов были получены математические зависимости (1-4) для расчета величин распространенности р изотопа 13С.

Измерения отношений пиков в характеристических масс-спектрах фуллеренов проводят на масс-спектрометре в режиме термоэмиссии отрицательных ионов. Функциональная схема автоматизированного масс-спектрометра МИ 1201 приведена на фиг.1, где ИИ - источник ионов, МА - магнитный анализатор, Д - детектор ионов, ГЦР - генератор цифровой развертки, ПНЧ - преобразователь напряжения в частоту, PC - персональный компьютер.

В ИИ осуществляется загрузка анализируемой пробы фуллеренов в количестве порядка единиц мкг. Измерения отношений пиков в характеристических масс-спектрах фуллеренов проводят на масс-спектрометре с использованием твердофазного источника ионов в режиме термоэмиссии отрицательных ионов.

Наглядно масс-спектр молекулы фуллерена С60, зарегистрированный в режиме сканирования, приведен на фиг.2, где массовые пики 721, 722, 723, и т.д. обусловлены наличием в составе молекулы соответственно одного, двух, трех и т.д. атомов изотопа 13С.

В ходе масс-спектрометрических измерений в режиме дискретной развертки регистрируют отношения интенсивностей пиков в характеристических молекулярных масс-спектрах фуллеренов.

Использование твердофазного источника ионов в режиме термоэмиссии отрицательных ионов необходимо для обеспечения получения ионного пучка фуллеренов без разрушения их молекулярной структуры. При работе с положительными ионами фуллеренов получить интенсивные ионные токи без разрушения молекулярной структуры фуллеренов проблематично.

Расчет распространенности (изотопного состава каждого из элементов) производят по математическим формулам (1-4) биномиального распределения множества значений измеряемых величин:

где С0, C1, С2 и т.д. - интенсивности изотопных пиков для k=0, 1, 2 и т.д. соответственно;

n и k - соответственно количества атомов углерода 12С и 13С в молекуле фуллерена;

р - распространенность изотопа 13С, отн. ед.

Результаты расчетов приведены в таблице.

В прототипе расчет изотопного состава углерода произведен по традиционно применяемым математическим формулам для каждого из искомых компонентов, что становится неразрешимым при решении проблемы определения значительного множества разновидностей изотопов.

Используемые в предлагаемом способе математические формулы (1-4) позволяют рассчитывать распространенность изотопа 13С в смесях фуллеренов с произвольным содержанием изотопов углерода.

Т.о. при использовании предлагаемого способа анализа изотопного состава элементов обеспечивается возможность измерения изотопного состава углерода и его вариации в том числе и в фуллеренах при более высоких чувствительности и точности, чем это обеспечено в прототипе.

Возможность применения предлагаемого способа подтверждается следующим примером.

Пример

Предлагаемый способ был опробован в лабораторных условиях на приборе МИ 1201 с использованием твердофазного источника ионов в режиме термоэмиссии отрицательных ионов, на котором были проведены измерения отношений пиков в характеристических масс-спектрах проб фуллеренов С60 и C70, полученных из разных источников.

Результаты измерений отношений пиков в масс-спектрах фуллеренов, а также расчетов по ним распространенности изотопа 13С представлены в таблице.

Расчет распространенности р изотопа 13С проводился по формулам:

где С0, C1, C2 и т.д. - интенсивности изотопных пиков для k=0, 1, 2, и т.д. соответственно;

n и k - соответственно количества атомов углерода 12С и 13С в молекуле фуллерена;

р - распространенность изотопа 13С, отн. ед.

Следует отметить, что полученный данным способом результат измерения распространенности изотопа углерода 13С (1,0672±0,003)% находится в полном согласии с известными [например,IUPAC, Pure and Applied Chemistry 70, 217-235, 1998] справочными данными и имеет малую погрешность (относительное среднее квадратичное отклонение ОСКО=0,3%), что говорит о более высокой точности его по сравнению с прототипом.

В состав измерительного комплекса входят масс-спектрометр типа МИ 1201, и система автоматической регистрации масс-спектров (БПР-1 - блок программной регистрации).

Т.о. экспериментальное исследование предлагаемого способа анализа изотопного состава углерода подтвердило возможность измерения изотопного состава углерода и его вариаций в том числе и в фуллеренах и повышение точности и чувствительности определения распространенности изотопа углерода 13С по сравнению с прототипом.

Таблица

Результаты измерений отношений пиков в масс-спектрах фуллеренов С60 и С70. и расчетов распространенности изотопа углерода 13С.
МолекулыИзмеряемые отношения молекулярных пиковРезультаты измерений, отн.ед.Распространенность изотопа 13С, отн.ед. (расчетные значения)
С6013C112C59/12C600.65230.01075
13C212C58/12C600.20480.01064
13C312C57/12C600.04280.01067
13C412C56/12C600.00660.01067
С7013C112C69/12C700.75540.01068
13C212C68/12C700.28140.01068
13C312C67/12C700.06900.01069
Среднее значение распространенности изотопа 13С, отн.ед.0.01067
СКО, отн.ед.0,00003
ОСКО,%0.3

Способ масс-спектрометрического изотопного анализа веществ, включающий подготовку проб, регистрацию масс-спектров анализируемых веществ, расчет изотопного состава каждого из элементов по полученным масс-спектрам, в соответствии с предлагаемым способом подготовку образцов исследуемого вещества для анализа осуществляют путем преобразования углерода или его простых соединений СО, CO2 в фуллереновые молекулы, а при масс-спектрометрических измерениях регистрируют отношения интенсивностей пиков в характеристических молекулярных масс-спектрах фуллеренов, после чего по формулам 1-4 биномиального распределения множества значений измеряемых величин рассчитывают распространенность изотопа 13С:

где С0, C1, С2, и т.д. - интенсивности изотопных пиков для k=0, 1, 2, и т.д. соответственно;

n и k - соответственно количества атомов углерода 12С и 13С в молекуле фуллерена;

р - распространенность изотопа 13С, отн. ед.



 

Похожие патенты:

Изобретение относится к аналитической химии, в частности к приемам создания синтетических стандартных образцов (СО), имитирующих по составу аэрозоли, нагруженные на фильтр, и может быть использовано в количественном химическом анализе (КХА) состава проб при контроле загрязнений атмосферы для определения градуировочной характеристики и проверки правильности результатов анализа.

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике. .

Изобретение относится к медицине и предназначено для прогнозирования тяжести абдоминального сепсиса. .

Изобретение относится к области исследования материалов путем определения их физических или химических свойств с помощью оптических средств и к системам, в которых материал возбуждают оптическими средствами, и он люминесцирует.

Изобретение относится к измерительной технике. .

Изобретение относится к области биотехнологии, а конкретно к оценке состояния биологического объекта с помощью оптико-электронных средств. .

Изобретение относится к области химического и биологического анализа и может быть использовано для создания высокочувствительных аналитических приборов для качественного и количественного анализа водных и органических растворов, а именно природных вод и техногенных растворов, содержащих низкие концентрации определяемых неорганических и органических компонентов, а также растворов, содержащих биологически активные соединения.

Изобретение относится к медицине, точнее к стоматологии

Изобретение относится к инженерной экологии и может быть использовано при мониторинге рек в качестве речной воды, в частности, с учетом загрязнения сточными водами в пределах городов и населенных пунктов

Изобретение относится к измерительной технике в медицине, а именно клинико-лабораторной диагностике степени тяжести состояния больных

Изобретение относится к микротехнологии

Изобретение относится к оптическому приборостроению, а именно к устройствам для люминесцентного анализа, и может быть использовано для оперативного контроля уровня загрязненности крупногабаритных металлических поверхностей люминесцирующими жировыми загрязнениями (остатками масел, смазок, смазочно-охлаждающих жидкостей), в том числе в полевых условиях, а также при контроле промышленной чистоты изделий машиностроения в механических, сборочных цехах, на складах

Изобретение относится к области физико-химических методов анализа малых и труднодоступных люминесцирующих объектов по спектрам их оптического поглощения

Изобретение относится к средствам оптического контроля жидких сред и может быть использовано для измерения концентрации флюоресцирующих веществ и мутности среды в составе специализированных комплексов или систем, устанавливаемых в том числе и на подвижных носителях
Наверх