Способ оценки остаточного ресурса автомобильного моста

Изобретение относится к испытательной технике и может быть использовано для оценки технического состояния строительных конструкций, а именно ресурса автомобильного моста. Оценку остаточного ресурса автомобильного моста проводят по параметрам экспериментальных амплитудно-частотных характеристик под воздействием нагрузки, измерения проводят в два этапа с интервалом между ними не менее 0,05 проектного ресурса моста. При этом определяют текущие значение скоростей или ускорений в крайних угловых точках верхней плиты ригеля моста под воздействием движущейся колонны транспортных средств из не менее 5 автомашин каждая весом 19-20 т, с интервалом 10-30 м, со скоростью 40, 50, 60 км/час. Проводят численное интегрирование, осуществляют вейвлет-преобразование, получают спектрограммы перемещений на всех режимах движения колонн. Определяют скорость изменения частоты зоны максимальных амплитуд за интервал времени Δt между контрольными испытаниями и остаточный ресурс Т. Технический результат заключается в снижении трудоемкости и повышении точности определения ресурса строительных конструкций. 2 ил.

 

Изобретение относится к строительству и может быть использовано при оценке технического состояния строительных конструкций, а именно ресурса автомобильного моста.

Наиболее близким техническим решением к предлагаемому является способ оценки остаточного ресурса строительных конструкций по параметрам экспериментальных амплитудно-частотных характеристик под воздействием механических нагрузок (см. Патент РФ № 2161788, опубл. 10.01.2001.)

Недостатком его является большая трудоемкость, недостаточная точность.

В изобретении решается задача снижения трудоемкости и повышения точности определения ресурса.

Решение указанной задачи достигается следующим образом. Оценку остаточного ресурса автомобильного моста проводят по параметрам экспериментальных амплитудно-частотных характеристик под воздействием нагрузки, измерения проводят в два этапа с интервалом между ними не менее 0,05 проектного ресурса моста, при этом определяют текущие значение скоростей или ускорений в крайних угловых точках верхней плиты ригеля моста под воздействием движущейся колонны транспортных средств из не менее 5 автомашин каждая весом 19-20 т, с интервалом 10-30 м, со скоростью 40, 50, 60 км/час, проводят численное интегрирование, осуществляют вейвлет-преобразование, получают спектрограммы перемещений на всех режимах движения колонн, определяют скорость изменения частоты зоны максимальных амплитуд за интервал времени Δt между контрольными испытаниями по формуле

а остаточный ресурс Т определяют по формуле

где fпр. - предельная частота потери упругости конструкции.

Отличительными признаками предлагаемого способа являются следующие:

измерения проводят в два этапа с интервалом между ними не менее 0,05 проектного ресурса моста, при этом определяют текущие значение скоростей или ускорений в крайних угловых точках верхней плиты ригеля моста под воздействием движущейся колонны транспортных средств из не менее 5 автомашин каждая весом 19-20 т, с интервалом 10-30 м, со скоростью 40, 50, 60 км/час, проводят численное интегрирование, осуществляют вейвлет-преобразование, получают спектрограммы перемещений на всех режимах движения колонн, определяют скорость изменения частоты зоны максимальных амплитуд за интервал времени Δ t между контрольными испытаниями по формуле

а остаточный ресурс Т определяют по формуле

где fпр. - предельная частота потери упругости конструкции.

Это позволяет снизить трудоемкость определения ресурса моста и повысить его точность.

Сущность изобретения поясняется чертежами, где на фиг.1 показана схема размещения датчиков на ригеле автомобильного моста, на фиг.2 - спектрограмма перемещений ригеля моста.

Предлагаемый способ реализуется следующим образом.

Оценка остаточного ресурса автомобильного моста производится по параметрам экспериментальных амплитудно-частотных характеристик под воздействием нагрузки. Измерения проводят в два этапа с интервалом между ними не менее 0,05 проектного ресурса моста, при этом определяют текущие значение скоростей или ускорений в крайних угловых точках 1, 2, 3, 4 верхней плиты ригеля моста (см. фиг.1) под воздействием движущейся колонны транспортных средств из не менее 5 автомашин каждая весом 19-20 т, с интервалом 10-30 м, со скоростью 40, 50, 60 км/час по каждой полосе движения транспортных средств. С полученными значениями проводят численное интегрирование, осуществляют вейвлет-преобразование (Воробьев В.И., Грибунин В.Г. Теория и практика вейвлет-преобразования. СПб.: Изд-во ВУС, 1999, 208 с.), получают спектрограммы перемещений (см. фиг.2) на всех режимах движения колонн, определяют скорость изменения частоты зоны максимальных амплитуд за интервал времени Δt между контрольными испытаниями по формуле

а остаточный ресурс Т определяют по формуле

где fпр. - предельная частота потери упругости конструкции.

Использование интервала 0,05 проектного ресурса моста между экспериментами обеспечивает достаточно высокую точность определения ресурса. Использование для возбуждения колебаний груженых машин с весом 19-20 т позволяет приблизить условия испытаний к эксплуатационным и получить максимальные амплитуды виброперемещений. Режим движения автотранспорта 40, 50, 60 км/час по имеющимся в автомобилях спидометрам обеспечивает получение спектральных характеристик во всем диапазоне возможных скоростей автомобилей от 35 до 65 км/час. Осуществление вейвлет-преобразований позволяет точнее установить доминирующие частоты колебания моста.

Пример выполнения предлагаемого способа.

Эксперименты и определение ресурса было произведено для ригельного блока конструкции Камского автомобильного моста.

Сборный железобетонный мост через реку Каму был сдан в эксплуатацию в 1967 году.

В качестве первичных элементов для регистрации колебаний были использованы сейсмические датчики:

- СМ-4Б - датчик виброускорений (акселерометр) с рабочим диапазоном измеряемых частот 0,6-40 Гц;

- КВЭ-3Б - датчик виброскоростей (велосиметр) с рабочим диапазоном 0,01-10 Гц.

Датчики были установлены в концевых зонах внутри коробов ригельных блоков на специальных металлических горизонтальных площадках (фиг.1). В ходе экспериментов в 1991 г. регистрировались временные сигналы (в вольтах), являющиеся напряжением датчика и характеризующие вертикальные составляющие виброускорений (для аксерерометра СМ-4Б) или виброскоростей (для велосиметра КВЭ-3Б) в точке его расположения. Путем численного интегрирования виброускорения или виброскорости пересчитываются в виброперемещения. Для виброперемещений были осуществлены вейвлет-преобразования и получены спектральные характеристики (фиг.2).

Анализ спектральных характеристик ригельного блока для всех датчиков и всех режимов движения показал, что по спектру мощности доминирует частота 0,82 Гц. Повторное испытание в 1997 г. показало на снижение доминирующей частоты до 0,54 Гц. Предельная частота потери упругости конструкции (потеря жесткости) fпр.=0,2 Гц. Остаточный ресурс 6,07 лет.

Способ оценки остаточного ресурса автомобильного моста по параметрам экспериментальных амплитудно-частотных характеристик под воздействием нагрузки, отличающийся тем, что измерения проводят в два этапа с интервалом между ними не менее 0,05 проектного ресурса моста, при этом определяют текущие значения скоростей или ускорений в крайних угловых точках верхней плиты ригеля моста под воздействием движущейся колонны транспортных средств из не менее 5 автомашин, каждая весом 19-20 т, с интервалом 10-30 м со скоростью 40, 50, 60 км/ч, проводят численное интегрирование, осуществляют вейвлет-преобразование, получают спектрограммы перемещений на всех режимах движения колонн, определяют скорость изменения частоты зоны максимальных амплитуд за интервал времени Д1 между контрольными испытаниями по формуле

а остаточный ресурс Т определяют по формуле

где fпр. - предельная частота потери упругости конструкции.



 

Похожие патенты:

Изобретение относится к контролю состояния корпусов, а более конкретно к определению общих остаточных деформаций транспортных и/или стояночных средств, в частности корпусов судов.

Изобретение относится к испытательной технике. .

Изобретение относится к контролю общих остаточных деформаций транспортных и/или стояночных средств, в частности корпусов судов. .

Изобретение относится к стендам для испытаний на прочность конструкций и может быть использовано для испытаний головных обтекателей и других отсеков ракет-носителей.

Изобретение относится к области испытательной техники, в частности к установкам для прочностных испытаний авиационных конструкций. .

Изобретение относится к области строительства и может быть использовано при разработке, изготовлении и эксплуатации континуальных конструкций. .

Изобретение относится к области строительства и предназначено для учета совместности работы двухслойных конструкций балочного типа. .

Изобретение относится к области промышленного строительства, а именно к технологии проведения оценки технического состояния дымовых труб. .

Изобретение относится к области испытательной техники, в частности к установкам для прочностных испытаний авиационных конструкций. .

Изобретение относится к области испытательной техники, в частности к установкам для испытания летательных аппаратов на прочность

Изобретение относится к области экспериментальной техники и может быть использовано в стендах прочностных испытаний конструкций

Изобретение относится к измерительной технике и может быть использовано для определения момента возникновения пробоины на крыле летательного аппарата при воздействии средств поражения

Изобретение относится к строительству и может быть использовано при мониторинге технического состояния строительных конструкций, а именно автомобильного моста

Изобретение относится к способам исследования упругих свойств конструкций и может быть использовано для определения трещин или пробоин в конструкции летательного аппарата в полете

Изобретение относится к испытательной технике

Изобретение относится к испытательной технике, в частности к стендам для испытания деталей машин и механизмов на воздействие динамических нагрузок

Изобретение относится к области испытательной техники, в частности к устройствам для испытания летательных аппаратов на прочность
Наверх