Способ приготовления катализатора и процесс полимеризации этилена с использованием этого катализатора

Изобретение относится к способу получения нанесенного титан-магниевого катализатора для производства полиэтилена (ПЭ) и сверхвысокомолекулярного полиэтилена (СВМПЭ) методом суспензионной полимеризации этилена в углеводородном растворителе. Описан способ приготовления нанесенного катализатора для полимеризации этилена, содержащего соединение титана на магнийсодержащем носителе, который получают в результате взаимодействия раствора магнийорганического соединения состава MgPh2·nMgCl2·mR2O, где Ph - фенил, R2O - простой эфир с R - бутил или i-амил, n=0.37-0.7, m=1-2, с соединениями, вызывающими превращение магнийорганического соединения в твердый магнийсодержащий носитель, в качестве такого соединения используют композицию, включающую в свой состав продукт взаимодействия алкилхлорсилана состава

R'kSiCl4-k, где R - алкил или фенил, к=1, 2, с тетраалкоксидом кремния Si(OEt)4 при мольном соотношении R'kSiCl4-k/Si(OEt)4, равном 2-4, и диалкилароматический эфир, а также процесс полимеризации этилена в присутствии катализатора. Технический результат - высокая активность катализатора при температурах ≤60°С, размер частиц в области от 5.5 до 3.0 мкм, катализатор позволяет получать порошок полимера со средним размером частиц ≤150 мкм, узким распределением частиц по размеру и высокой насыпной плотностью (≥350 г/л). 2 н. и 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к способу получения нанесенного титанмагниевого катализатора для производства полиэтилена (ПЭ) и сверхвысокомолекулярного полиэтилена (СВМПЭ) методом суспензионной полимеризации этилена в углеводородном растворителе.

Известен ряд критериев для подбора катализаторов для производства СВМПЭ суспензионным методом:

(1) Нанесенные титанмагниевые катализаторы как наиболее эффективные для производства ПЭ и СВМПЭ суспензионным методом.

(2) Высокая активность при температурах полимеризации ниже 70°С, при которых можно получать СВМПЭ с молекулярной массой более 1·106 (характеристическая вязкость более 10 дл/г).

(3) Размер частиц катализатора не более 7 мкм для получения порошка СВМПЭ с размером частиц не более 200 мкм. При этом для ряда марок СВМПЭ предпочтительно получать порошок СВМПЭ с размером частиц не более 100 мкм, для чего требуется использовать катализатор с размером частиц не более 4 мкм.

(4) Узкое распределение частиц по размеру (отсутствие крупных частиц полимера размером более 300 мкм) и достаточно высокая насыпная плотность порошка полимера (более 350 г/л) и высокая сыпучесть порошка полимера.

Известен способ приготовления нанесенного титанмагниевого катализатора, содержащего тетрахлорид титана на магнийсодержащем носителе, который получают взаимодействием раствора магнийорганического соединения (МОС) состава MgPh2·nMgCl2·mR2О, где Ph=фенил, R2O=простой эфир с R=бутил или i-амил, n=0.37-0.7, m=1-2, с четыреххлористым углеродом с последующей обработкой полученного магнийсодержащего носителя тетрахлоридом титана [РФ 2064836, B 01 J 31/38, 10.08.96]. Этот метод позволяет получать катализатор с регулируемым размером частиц в области от 30 до 3 мкм. Однако для получения катализатора с размером частиц в области 7-3 мкм, требуемым для производства СВМПЭ, взаимодействие МОС с CCl4 необходимо проводить при низких температурах (от -5°С до -15°С); при этом процесс взаимодействия МОС с ССЦ становится труднорегулируемым, особенно при увеличении объемов аппаратуры и количества получаемого катализатора.

Известен способ приготовления нанесенного титанмагниевого катализатора, содержащего тетрахлорид титана на магнийсодержащем носителе, который получают взаимодействием раствора магнийорганического соединения (МОС) состава MgPh2·nMgCl2·mR2О, где Ph=фенил, R2О=простой эфир с R=бутил или i-амил, n=0.37-0.7, m=1-2, с Si(OEt)4 [РФ 2152404, C 08 F 4/64, 10.07.2000] с последующей обработкой носителя электронодонорным соединением и четыреххлористым титаном. Однако этот метод позволяет получать катализаторы с размером частиц только более 10 мкм.

Наиболее близким является способ приготовления нанесенного титанмагниевого катализатора [РФ 2257263, B 01 J 31/38, 27.07.05], в котором магнийсодержащий носитель получают взаимодействием раствора магнийорганического соединения (МОС) состава MgPh2·nMgCl2·mR2O (где Ph=фенил, R2O=простой эфир с R=бутил или i-амил, n=0.37-0.7, m=1-2) с алкихлорсиланом RxSiCl4-x (R=алкил, фенил, х=1,2). Однако этот способ не позволяет получать катализатор с размером частиц менее 6 мкм. Кроме того, активность этого катализатора при температурах полимеризации ≤60°С недостаточно высока.

В заявляемом изобретении ставится задача: найти способ синтеза нанесенных титанмагниевых катализаторов с высоким уровнем активности при низких температурах полимеризации (≤60°С), позволяющий получать частицы катализатора с размером частиц в области 3-7 мкм.

Эта задача решается тем, что нанесенный титанмагниевый катализатор, содержащий соединение титана на магнийсодержащем носителе, получают в результате взаимодействия раствора магнийорганического соединения (МОС) состава MgPh2·nMgCl2·mR2O, где: Ph - фенил, R2O - простой эфир с R=бутил или i-амил, n=0.37-0.7, m=1-2, с соединениями, вызывающими превращение МОС в твердый магнийсодержащий носитель. В качестве соединения, используемого для превращения МОС в твердый магнийсодержащий носитель, используют композицию, включающую в свой состав продукт взаимодействия алкилхлорсилана состава R'kSiCl4-k, где R - алкил или фенил, k=1, 2, с тетраэтоксидом кремния Si(OEt)4, и диалкилароматический эфир.

Было найдено, что только использование композиции указанного выше состава позволяет получить катализатор, обладающий высокой активностью (до 230 кг ПЭ/г Ti час атм С2H4 при температурах полимеризации ≤60°С), имеющий размер частиц в области от 5.5 до 3.0 мкм и позволяющий получать порошок полимера со средним размером частиц ≤150 мкм, узким распределением частиц по размеру и высокой насыпной плотностью (≥350 г/л).

Полимеризацию проводят в режиме суспензии при температурах 40-100°С в среде углеводородного растворителя (например, гексана, гептана) и давлении этилена 2-40 атм. В качестве регулятора молекулярной массы полимера при получении полиэтилена высокой плотности (ПЭВП) используют водород в количестве 10-30 об.%. Катализатор для полимеризации этилена используют в сочетании с сокатализатором - триалкилом алюминия (преимущественно, триизобутилалюминием или триэтилалюминием).

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

(А). Приготовление раствора магнийорганического соединения.

В стеклянный реактор объемом 1 л, оборудованный мешалкой и термостатирующим устройством, загружают 29.2 г порошкообразного магния (1.2 моль) в 450 мл хлорбензола (4.4 моль), 203 мл дибутилового эфира (1.2 моль) и активирующий агент, представляющий собой раствор 0.05 г йода в 3 мл хлористого бутила. Реакцию проводят в атмосфере инертного газа (азот, аргон) при температуре от 80 до 100°С в течение 10 ч. По окончании реакции полученную реакционную смесь отстаивают и отделяют жидкую фазу от осадка. Жидкая фаза представляет собой раствор в хлорбензоле магнийорганического соединения состава MgPh2 0.49MgCl2 2(С4Н9)2О с концентрацией 1.0 моль Mg/л.

(Б). Синтез носителя.

200 мл полученного раствора (0.2 моль Mg) загружают в реактор с мешалкой и при температуре 30°C в течение 15 мин дозируют 0.01 моль (2.7 мл) дибутилфталата (ДБФ) (ДБФ/Mg=0.05), а затем при 15°С в течение 2 ч дозируют в реактор раствор, состоящий из 35 мл смеси фенилтрихлорсилана PhSiCl3 с Si(OEt)4 при мольном соотношении 3:1 и 35 мл декана (Si/Mg=1.0). Затем нагревают реакционную смесь до 60°С в течение 30 мин и выдерживают при этой температуре 1 ч. Удаляют маточный раствор и промывают образовавшийся осадок гептаном 4 раза по 250 мл при температуре 20°С. Получают 33 г порошкообразного магнийсодержащего носителя в виде суспензии в гептане.

К полученной суспензии магнийсодержащего носителя в 150 мл гептана добавляют 22 мл TiCl4 (TiCl4/Mg=1), нагревают реакционную смесь до 70°С и выдерживают при перемешивании в течение 2 ч, затем твердый осадок отстаивают и промывают гептаном при температуре 60-70°С 5 раз по 200 мл. Получают нанесенный катализатор с содержанием титана 4.1 мас.%. и со средним размером частиц 4.8 мкм.

Полимеризацию этилена проводят в стальном реакторе объемом 0.8 л, оборудованном мешалкой и термостатирующей рубашкой. В качестве растворителя для полимеризации используют гептан (250 мл) и сокатализатор - триэтилалюминий (AlEt3) с концентрацией 3 ммоль/л. Полимеризацию проводят при температуре 60°С, давлении этилена 2 атм в течение 3 ч. Результаты полимеризации приведены в таблице.

Пример 2.

Катализатор получают в условиях примера 1, за исключением того, что используют раствор МОС состава MgPh2 0.5 MgCl3 1(i-C5H11)2O, который взаимодействует с 0.025 молями ДБФ (ДБФ/Mg=0.125), а вместо PhSiCl4 используют метилтрихлорсилан MeSiCl3. Катализатор содержит 3.0 мас.% титана и имеет средний размер частиц 5.1 мкм. Полимеризацию этилена ведут в условиях примера 1, за исключением того, что время полимеризации 2 ч. Результаты полимеризации приведены в таблице.

Пример 3.

Синтез катализатора осуществляют аналогично примеру 1, за исключением того, что взаимодействие магнийорганического соединения с ДБФ осуществляют при мольном соотношении ДБФ/Mg=0.125, а взаимодействие МОС со смесью MeSiCl3/Si(OEt)4 (3:1) осуществляют при соотношении Si/Mg=1.8. Катализатор содержит 4 мас.% титана и имеет средний размер частиц 5.2 мкм. Полимеризацию этилена ведут в условиях примера 2, за исключением того, что используют ТЭА с концентрацией 4.8 ммоль/л. Результаты полимеризации приведены в таблице.

Пример 4.

Синтез катализатора осуществляют аналогично примеру 2, за исключением того, что взаимодействие магнийорганического соединения с ДБФ осуществляют при мольном соотношении ДБФ/Mg=0.25. Катализатор содержит 3.4 мас.% титана и имеет средний размер частиц 3.0 мкм. Полимеризацию этилена ведут в условиях примера 2, за исключением того, что используют ТЭА с концентрацией 1.3 ммоль/л, а время полимеризации 1 ч. Результаты полимеризации приведены в таблице.

Пример 5.

Синтез катализатора осуществляют аналогично примеру 4. Полимеризацию этилена ведут в условиях примера 3, за исключением того, что температура полимеризации 50°C, а время полимеризации 1 ч. Результаты полимеризации приведены в таблице.

Пример 6.

Синтез катализатора осуществляют аналогично примеру 4, за исключением того, что взаимодействие магнийорганического соединения со смесью MeSiCl3/Si(OEt)4 (3:1) осуществляют при температуре 50°С. Катализатор содержит 3.7 мас.% титана и имеет средний размер частиц 4.1 мкм. Полимеризацию этилена ведут в условиях примера 3, за исключением того, что время полимеризации 1 ч. Результаты полимеризации приведены в таблице.

Пример 7.

Синтез катализатора осуществляют аналогично примеру 4, за исключением того, что вместо MeSiCl3 используют Ме2SiCl2, а вместо дибутилфталата используют диизобутилфталат (ДИБФ). Катализатор содержит 3.5 мас.% титана и имеет средний размер частиц 3.5 мкм. Полимеризацию этилена ведут в условиях примера 6. Результаты полимеризации приведены в таблице.

Пример 8

Синтез катализатора осуществляют аналогично примеру 4. Полимеризацию ведут в условиях 1, за исключением того, что в качестве сокатализатора используют триизобутилалюминий, температура полимеризации 80°С, давление этилена 4 атм, давление водорода 1 атм, время полимеризации 1 ч. Получают полиэтилен с индексом расплава (при нагрузке 5 кг) 3.1 г/10 мин и соотношением ИР(5)/ИР(2)=3.0, остальные результаты полимеризации приведены в таблице.

Пример 9 (сравнительный).

Синтез катализатора осуществляют аналогично примеру 4, за исключением того, что вместо ДБФ используют этилбензоат (ЭБ). Катализатор содержит 5.8 мас.% титана и имеет средний размер частиц 5 мкм. Полимеризацию этилена ведут в условиях примера 3. Результаты полимеризации приведены в таблице.

Пример 10 (сравнительный).

Синтез катализатора осуществляют аналогично примеру 4, за исключением того, что вместо ДБФ используют тетрагидрофуран (ТГФ). Катализатор содержит 3.1. мас.% титана. Полимеризацию этилена ведут в условиях примера 1. Результаты полимеризации приведены в таблице.

Пример 11 (сравнительный).

Синтез катализатора осуществляют аналогично примеру 2, за исключением того, что взаимодействие магнийорганического соединения со смесью MeSiCl3/Si(OEt)4 осуществляют в отсутствие ДБФ. Катализатор содержит 2.6 мас.% титана и имеет средний размер частиц 7.1 мкм. Полимеризацию этилена ведут в условиях примера 2. Результаты полимеризации приведены в таблице.

Пример 12 (сравнительный).

Синтез катализатора осуществляют аналогично примеру 3, за исключением того, что взаимодействие магнийорганического соединения с ДБФ осуществляют при мольном соотношении ДБФ/Mg=0.08, а взаимодействие МОС с MeSiCl4 осуществляют в отсутствие Si(OEt)4. Катализатор содержит 2.9 мас.% титана и имеет средний размер частиц 5.4 мкм. Полимеризацию этилена ведут в условиях примера 6. Результаты полимеризации приведены в таблице.

Пример 13 (сравнительный).

Синтез катализатора осуществляют аналогично примеру 11, за исключением того, что взаимодействие магнийорганического соединения с ДБФ осуществляют при мольном соотношении ДБФ/Mg=0.25. В результате образуется гелеобразный продукт.

Пример 14 (сравнительный).

Катализатор получают в условиях примера 1, за исключением того, что в соответствии с прототипом [РФ 2257263, B 01 J 31/38, 27.07.05] для взаимодействия с магнийорганическим соединением при получении носителя используют PhSiCl3 при соотношении Si/Mg=1.8 в отсутствие ДБФ и Si(OEt)4. Носитель обрабатывают четыреххлористым титаном при 120°С. Катализатор содержит 2.5 мас.% титана и имеет средний размер частиц 8 мкм. Полимеризацию этилена ведут в условиях примера 3. Результаты полимеризации приведены в таблице.

Пример 15 (сравнительный).

Катализатор получают в условиях примера 1, за исключением того, что для взаимодействия с магнийорганическим соединением при получении носителя используют четыреххлористый углерод при соотношении CCl4/Mg=1.8, а взаимодействие CCl4 с МОС осуществляют при температуре минус 15°C. Катализатор содержит 3.5 мас.% титана и имеет средний размер частиц 3 мкм. Полимеризацию этилена ведут в условиях примера 3. Результаты полимеризации приведены в таблице.

Из представленных выше примеров видно, что только в случае использования для приготовления магнийсодержащего носителя композиции, включающей в свой состав продукт взаимодействия алкилхлорсилана с тетраалкоксидом кремния и диалкилароматический эфир (например, дибутилфталат), взятые в определенных соотношениях, удается получить катализатор, обладающий высокой активностью при температурах ≤60°С, имеющий размер частиц в области от 5.5 до 3.0 мкм и позволяющий получать порошок полимера со средним размером частиц ≤150 мкм, узким распределением частиц по размеру и высокой насыпной плотностью (≥350 г/л).

Этот катализатор может быть использован как для получения сверхвысокомолекулярного полиэтилена (характеристическая вязкость 13-28 дл/г, см. таблицу), так и для получения полиэтилена высокой плотности (пример 8) с более низкой молекулярной массой (индексом расплава полиэтилена ≥0.1 г/10 мин).

Использование для приготовления магнийсодержащего носителя только алкилхлорсиланов в соответствии с патентом РФ 2257263 (сравнительный пример 14), или смеси алкилхлорсилана с тетраалкоксидом кремния (сравнительный пример 11), или смеси алкилхлорсилана с диалкилароматическим эфиром (сравнительные примеры 12-13), или ароматических моноэфиров (сравнительный пример 9), или простых эфиров (сравнительный пример 10) не позволяет достичь поставленных целей.

1. Способ приготовления нанесенного катализатора для полимеризации этилена, содержащего соединение титана на магнийсодержащем носителе, который получают в результате взаимодействия раствора магнийорганического соединения состава MgPh2·nMgCl2·mR2O, (где Ph - фенил; R2O - простой эфир с R - бутил или i-амил; n=0,37-0,7, m=1-2) с соединениями, вызывающими превращение магнийорганического соединения в твердый магнийсодержащий носитель, отличающийся тем, что в качестве соединения, используемого для превращения магнийорганического соединения в твердый магнийсодержащий носитель, используют композицию, включающую в свой состав продукт взаимодействия алкилхлорсилана состава R'kSiCl4-k, где R - алкил или фенил, к=1, 2, с тетраалкоксидом кремния Si(OEt)4 при мольном отношении R'kSiCl4-k/Si(OEt)4, равном 2-4, и диалкилароматический эфир.

2. Способ по п.1, отличающийся тем, что взаимодействие раствора магнийорганического соединения с вышеуказанной композицией проводят при температурах 15-50°С и мольных соотношениях Si/Mg=1-2,5 и диалкилароматический эфир / Mg=0,05-0,4.

3. Процесс полимеризации этилена в присутствии катализатора, содержащего в своем составе соединение титана на магнийсодержащем носителе, отличающийся тем, что используют катализатор по любому из пп.1 и 2 в сочетании с сокатализатором - триалкилом алюминия.



 

Похожие патенты:

Изобретение относится к способу получения сверхвысокомолекулярного полиэтилена. .

Изобретение относится к способу получения катализаторов полимеризации этилена и сополимеризации этилена с -олефинами, более конкретно к нанесенным катализаторам циглеровского типа, содержащим в своем составе соединение переходного металла на магнийсодержащем носителе.

Изобретение относится к способам получения высокомолекулярных высших полиальфаолефинов и катализаторам для осуществления этого способа. .

Изобретение относится к способу получения катализатора для полимеризации олефинов и способу полимеризации олефиновых мономеров с его использованием. .

Изобретение относится к области изготовления катализаторов, а именно к изготовлению катализаторов Циглера-Натта, которые могут быть использованы для синтеза высокомолекулярных гомо- и сополимеров -олефинов, a -олефинов и полярных мономеров, каучуков, в частности в производстве полипропилена.

Изобретение относится к способу получения сверхвысокомолекулярного полиэтилена. .

Изобретение относится к композициям на основе галогенида магния, катализаторам, приготовленным на их основе, способам получения композиций на основе галогенидов магния и катализаторам, а также к способам полимеризации.
Изобретение относится к компонентам катализатора для получения этиленовых (со)полимеров при использовании способов (со)полимеризации в газовой фазе, в суспензии или в массе.

Изобретение относится к способу получения катализатора полимеризации этилена и сополимеризации этилена с -олефинами, более конкретно к нанесенным катализаторам циглеровского типа, содержащим в своем составе соединение переходного металла на магнийсодержащем носителе.

Изобретение относится к способу получения катализаторов полимеризации этилена и сополимеризации этилена с -олефинами, более конкретно к нанесенным катализаторам циглеровского типа, содержащим в своем составе соединение переходного металла на магнийсодержащем носителе.

Изобретение относится к области получения высших олефинов, а именно 1-бутена полимеризационной степени чистоты, методом каталитической димеризации этилена. .

Изобретение относится к катализирующим полимеризацию соединения каталитическим системам, включающим эти каталитические соединения, и их применению в полимеризации этилена и по меньшей мере одного сомономера.
Изобретение относится к получению полидиенов на титан-магниевых катализаторах и может быть использовано для получения синтетической гуттаперчи. .

Изобретение относится к способу получения нанесенного титан-магниевого катализатора для производства полиэтилена и сверхвысокомолекулярного полиэтилена методом суспензионной полимеризации этилена в углеводородном растворителе

Наверх