Способ определения микроконцентраций паров аммиака в воздухе



Способ определения микроконцентраций паров аммиака в воздухе
Способ определения микроконцентраций паров аммиака в воздухе

Владельцы патента RU 2319958:

Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (RU)

Изобретение относится к аналитической химии неорганических соединений и может быть применено при анализе паров аммиака в воздухе. Способ определения микроконцентраций паров аммиака в воздухе включает приготовление хемосорбента, заполнение им тест-устройства, экспонирование в парах аммиака, регистрацию аналитического сигнала в течение 10-15 с и нахождение концентрации аммиака по градуировочному графику, причем в качестве тест-устройства применяют пьезокварцевый резонатор, электроды которого модифицированы раствором сульфосалициловой кислоты так, что масса пленки после удаления растворителя сушкой в сушильном шкафу при температуре 40-50°С в течение 15-20 мин и при горизонтальном расположении резонатора составила 10-15 мкг. Достигается высокая чувствительность, точность, экспрессность и селективность анализа. 2 ил., 1 табл.

 

Изобретение относится к аналитической химии неорганических соединений и может быть использовано для определения микроконцентраций паров аммиака в воздухе и газовой смеси любого состава.

Наиболее близким по технической сущности и достигаемому эффекту является способ определения концентрации паров аммиака с помощью индикаторных трубок на основе нитрата ртути (II) [Ю.А.Золотов, В.Г.Амелин // Тест-методы анализа. - М.: Химия, 2002, - 290 с.].

Недостатком существующего способа является токсичность чувствительного реагента-наполнителя (соль ртути), высокий предел обнаружения при определениях микроконцентраций паров аммиака в газовой фазе, длительность анализа, необходимость аспирации воздуха, субъективность фиксирования аналитического сигнала, зависимость длины окрашенной зоны от внутреннего диаметра трубки, скорости просачивания воздуха, нечеткости границы окрашенной области вследствие размывания хемосорбента. Для способа характерны высокие погрешности, что связано с различной плотностью набивки индикатора и неравномерностью пропитки носителя.

Технической задачей изобретения является разработка способа определения паров аммиака в воздухе в диапазоне концентраций 0,01-10 мг/м3 с применением пьезокварцевого преобразователя с тонкопленочным покрытием, характеризующегося высокой чувствительностью, с низкими пределами обнаружения, точностью, экспрессностью и селективностью анализа, объективностью измерения и принятия решения, безопасностью применяемых реагентов.

Поставленная техническая задача достигается тем, что в способе определения микроконцентраций паров аммиака в воздухе, включающем приготовление хемосорбента, заполнение им тест-устройства, экспонирование в воздухе, определение концентрации аммиака, новым является то, что в качестве тест-устройства применяют пьезокварцевый резонатор, электроды которого модифицируют нанесением на них раствора сульфосалициловой кислоты так, чтобы масса пленки сорбента после удаления растворителя сушкой в сушильном шкафу при температуре 40-50°С в течение 15-20 мин и горизонтальном расположении резонатора составила 10-15 мкг, регистрируют изменение частоты колебаний пьезокварцевого резонатора с пленкой (сенсор) в газовой смеси или воздухе с аммиаком в течение 10-15 с, по которому находят концентрацию аммиака с применением градуировочного графика .

Технический результат изобретения заключается в разработке способа определения микроконцентраций паров аммиака в воздухе за счет протекания химической реакции на поверхности покрытия, расширении базы существующих модификаторов для определения микроконцентраций аммиака в воздухе, сокращении общего времени анализа, снижении пределов обнаружения и относительной погрешности, существенного повышения избирательности определения и объективности измерений и принятия решения, повышения экспрессности измерений и безопасности подготовки измерительного устройства к работе.

Фиг.1. - Градуировочный график для определения содержания паров аммиака по изменению частоты колебаний пьезокварцевого резонатора с пленкой сульфосалициловой кислоты на электродах .

Фиг.2. - Сорбционная активность пленки сульфосалициловой кислоты к соединениям различной природы: 1 - аммиак, 2 - вода, 3 - этанол, 4 - анилин, 5 - ацетон, 6 - метилэтилкетон, 7 - фенол, 8 - сероводород.

Способ определения микроконцентраций паров аммиака в воздухе заключается в следующем.

На электроды пьезокварцевого резонатора наносят раствор сульфосалициловой кислоты так, чтобы масса пленки сорбента после удаления растворителя сушкой в сушильном шкафу при температуре 40-50°С в течение 15-20 мин и горизонтальном расположении резонатора составила 10-15 мкг. Подготовленный резонатор с пленкой помещают в закрытую ячейку детектирования и фиксируют исходный («нулевой») отклик сенсора - частоту колебания. Затем в ячейку вкалывают шприцем пробу воздуха, содержащую пары аммиака на уровне микроконцентраций (0,01-10 мг/м3). Регистрируют частотомером или с помощью компьютера изменение частоты колебаний пьезокварцевого резонатора с пленкой (сенсор) в газовой смеси или воздухе с аммиаком в течение 10-15 с. Рассчитывают изменение частоты колебаний сенсора при введении паров аммиака и по градуировочному графику , который строят по стандартным газовым смесям, находят концентрацию его в анализируемой пробе воздуха (фиг.1).

Для оценки чувствительности и селективности определения пьезокварцевый резонатор с пленкой сульфосалициловой кислоты (сенсор) экспонируют в парах тест-соединений (фиг.2). Сенсор на основе сульфосалициловой кислоты проявляет чрезвычайно высокое сорбционное сродство к аммиаку при практически полной сорбционной инертности к другим соединениям.

Положительный эффект по предлагаемому способу достигается за счет того, что сульфосалициловая кислота характеризуется селективностью и специфичностью к парам аммиака, обусловленной высокими кислотными свойствами сульфогруппы, что, в свою очередь, способствует протеканию химической реакции по сульфогруппе с образованием аммиаката сульфосалициловой кислоты, затем обратимым взаимодействием по карбоксильной и гидроксильной группам.

Концентрацию паров аммиака находят по градуировочному графику , который строят по стандартным газовым смесям аммиака.

Все измерения проводят в закрытой моносенсорной ячейке детектирования с инжекторным вводом пробы в статических условиях.

Способ поясняется следующим примером.

Пример

На два обезжиренных этиловым спиртом электрода пьезокварцевого резонатора AT - среза с собственной частотой колебаний 8-10 МГц наносят микрошприцем раствор сульфосалициловой кислоты и удаляют свободный растворитель в сушильном шкафу 20 мин при температуре 45°С, располагая резонатор строго горизонтально в держателе. Масса пленки после сушки и охлаждения составляет 15,5 мкг. Подготовленный резонатор с пленкой (сенсор) помещают в закрытую ячейку детектирования и фиксируют исходный («нулевой») отклик - частоту колебания. Дрейф "нулевой" линии после сушки составляет ±3 Гц/мин. При большем отклонении резонатор с пленкой повторно сушат. Затем в ячейку детектирования поочередно вкалывают шприцем стандартные газовоздушные смеси с известной концентрацией аммиака (0,01-10 мг/м3). Регистрируют частотомером или с помощью компьютера изменение частоты колебаний пьезокварцевого резонатора с пленкой (сенсор) в газовой смеси или воздухе с аммиаком в течение 10-15 с. Рассчитывают изменение частоты колебаний сенсора при введении паров аммиака и строят градуировочный график в координатах (фиг.1). Вкалывают в детектор шприцем анализируемую пробу воздуха, содержащую аммиак. Фиксируют частотомером или с помощью компьютера изменения отклика сенсора (частота колебаний) в течение 10 с. Рассчитывают изменение частоты колебаний сенсора (аналитический сигнал) при введении паров аммиака и по градуировочному графику (фиг.1) находят концентрацию его в анализируемой пробе воздуха.

Без обновления пленок возможен анализ 10-12 проб, включая градуировочные смеси. После этого пленка легко смывается водой и повторно наносится на этот же преобразователь.

При реализации способа определения микроконцентраций паров аммиака в воздухе снижается предел обнаружения аммиака в газовой фазе; повышается воспроизводимость измерений; устраняется мешающее влияние сопутствующих компонентов при анализе паров аммиака; повышаются экспрессность и селективность определения; не применяются токсичные реагенты для подготовки устройства к работе.

Способ осуществим.

Сравнительная характеристика заявляемого способа и прототипа приведена в таблице.

Как видно из примера, таблицы и фиг.1-2, положительный эффект по способу определения микроконцентраций паров аммиака в воздухе достигается при применении в качестве тест-устройства пьезокварцевого преобразователя, модифицированного раствором сульфосалициловой кислоты, путем нанесения его на два электрода с последующей сушкой, горизонтально укрепляя в держателе резонатор, в течение 15-20 мин при температуре 45-50°С, так, что масса пленки сорбента составляет 10-15 мкг, концентрацию аммиака находят по градуировочному графику по отклику резонатора с пленкой в парах аммиака, измеренному в течение 10-15 с.

Разработанный способ позволяет определять аммиак в воздухе на уровне концентраций 0,01-10 мг/м3, снизить общее время анализа (до 1 мин). Способ экспрессный, легко осуществимый, высокоселективный, применим для определения паров аммиака в воздухе различных объектов и сложных смесей газов.

Изменение природы сорбента, способа формирования пленки модификатора, положения резонатора, температуры и времени при сушке, а также ее массы не позволяет сформировать однородное тонкопленочное покрытие на поверхности пьезокварцевого преобразователя и, как следствие, приводит к снижению чувствительности и высокой погрешности определения аммиака. Изменение времени регистрации аналитического сигнала сенсора при сорбции приводит к высоким погрешностям построения градуировочного графика и количественной оценки паров аммиака в газовой фазе.

Предложенный способ по сравнению с прототипом позволяет:

- снизить предел обнаружения аммиака в газовой фазе в 10 раз;

- повысить воспроизводимость анализа в 5 раз;

- увеличить воспроизводимость стадии формирования чувствительного слоя сорбента в 5 раз;

- устранить мешающее влияние сопутствующих компонентов при анализе паров аммиака;

- сократить общее время анализа в 5 раз;

- повысить селективность определения;

- повысить объективность измерения и принятия решения;

- не применять токсичные реагенты для подготовки устройства к работе.

Таблица
Сравнительная характеристика заявляемого способа и прототипа по определению микроконцентраций паров аммиака в воздухе
КритерииСпособ
ПрототипЗаявляемый
Диапазон определяемых концентраций4-30 мг/м30,01-10 мг/м3
Токсичность чувствительного слоя+-
Устройство для забора пробы воздуха++
Необходимость предварительной аспирации+-
Регенерация и возможность многократного применения--
Возможность повторного применения при обновлении поверхности чувствительного слоя-+
Мешающее влияние компонентовамины, водяной парне обнаружено
Стоимость одного определения (без учета стоимости вспомогательного оборудования)400 р.50 р.
Субъективность определения концентраций+-
Сложность интерпретации результатов+-
Время анализа5 мин1 мин
Погрешность стадии формирования чувствительного слоя, %17-205
Погрешность анализа, %5-102-3
Эксплуатационная долговечность в отсутствии паров аммиака2 мес.8 мес.

Способ определения микроконцентраций паров аммиака в воздухе, включающий приготовление хемосорбента, заполнение им тест-устройства, экспонирование в парах аммиака, отличающийся тем, что в качестве тест-устройства применяют пьезокварцевый резонатор, электроды которого модифицируют нанесением на них раствора сульфосалициловой кислоты так, чтобы масса пленки сорбента после удаления растворителя сушкой в сушильном шкафу при температуре 40-50°С в течение 15-20 мин и при горизонтальном расположении резонатора составила 10-15 мкг, регистрируют изменение частоты колебаний пьезокварцевого резонатора с пленкой (сенсора) в газовой смеси или в воздухе с аммиаком в течение 10-15 с, по которому находят концентрацию аммиака с применением градуировочного графика .



 

Похожие патенты:
Изобретение относится к аналитической химии и может быть использовано для определения золота (III) во вторичном сырье и ломе, в природном сырье и технологических растворах.

Изобретение относится к аналитической химии органических соединений и может быть применено при разработке процессов производства биологически активных пищевых добавок, поливитаминов, белковых смесей.

Изобретение относится к биологии, токсикологической и санитарной химии, а именно к способам определения 2,4,6-тринитрометилбензола в биологическом материале, и может быть использовано в практике санэпидстанций и химико-токсикологических лабораторий.
Изобретение относится к области аналитической химии и может быть использовано для проведения технологического контроля углеводородного газа, чтобы предотвратить коррозию трубопроводов.
Изобретение относится к аналитической химии платиновых металлов и может быть использовано при определении палладия в технологических нитритных растворах аффинажного производства.
Изобретение относится к области аналитической химии элементов, а именно к методам выделения и определения осмия, и может быть использовано при выделении и определении осмия в объектах различного вещественного состава.

Изобретение относится к области аналитической химии объектов окружающей среды, а именно концентрированию микроэлемента из воды и водных растворов с целью количественного его определения на примере ртути.

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания алюминия (III) в растворах чистых солей и искусственных смесей, содержащих алюминий (III) в очень малой концентрации.

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа (II) в растворах чистых солей и искусственных смесей, содержащих железо (II) в очень малой концентрации.

Изобретение относится к области аналитической химии, а именно анализу N,N-диметиламидо-о-этилцианфосфата, его обнаружению и количественному определению. .

Изобретение относится к средствам метрологического обеспечения газоаналитической аппаратуры, а именно к устройствам для создания потока парогазовой смеси с заданной концентрацией пара.

Изобретение относится к средствам метрологического обеспечения газоаналитической аппаратуры, а именно к устройствам для создания потока парогазовой смеси с заданной концентрацией пара.

Изобретение относится к биологии, токсикологической и санитарной химии, а именно к способам определения 2,4,6-тринитрометилбензола в биологическом материале, и может быть использовано в практике санэпидстанций и химико-токсикологических лабораторий.

Изобретение относится к биологической химии растений и касается определения дигидрокверцетина в растительном сырье. .

Изобретение относится к аналитической химии, а именно к газохроматографическому определению микроконцентраций диметиламина в воде, и может быть использовано для санитарного контроля водных объектов.
Изобретение относится к аналитической химии органических соединений и может быть рекомендовано для аналитического контроля содержания химических соединений в очищенных сточных водах предприятий лакокрасочной и фотографической промышленности.

Изобретение относится к газовому анализу смесей, позволяющему проводить полное разделение компонентов газожидкостной смеси, состоящей из воздуха, диоксида углерода, насыщенных и ненасыщенных углеводородов, воды, ацетальдегида, акролеина, пропиленоксида, ацетона в условиях программирования температуры.

Изобретение относится к газовому анализу смесей, позволяющему проводить полное разделение компонентов газожидкостной смеси, состоящей из воздуха, диоксида углерода, насыщенных и ненасыщенных углеводородов, воды, ацетальдегида, акролеина, пропиленоксида, ацетона в условиях программирования температуры.

Изобретение относится к аналитической технике, предназначенной для анализа газовых сред, в частности к детектированию веществ, разделяемых в хроматографических колонках для их последующего изотопного анализа, и может быть использовано в газовой и нефтяной промышленности, энергетике, геохимии, гидрологии, экологии, аналитическом приборостроении при проведении высокоточных измерений концентраций органических газов, кислорода, газообразных оксидов и для определения изотопного состава водорода в природных водных материалах.

Изобретение относится к области исследования или анализа материалов, в том числе фосфорорганических веществ, путем разделения образцов материалов на составные части с использованием адсорбции, абсорбции, хроматографии и масс-спектрометрии, а более конкретно к способам идентификации и количественного определения фосфорорганических веществ методами хромато-масс-спектрометрии.
Наверх