Способ получения монокристаллов молибдата цинка

Изобретение относится к выращиванию высокотемпературных неорганических монокристаллов и может быть использовано в квантовой электронике и физике элементарных частиц, в частности, для создания детекторов процесса двойного безнейтринного бета-распада. Выращивание осуществляют путем вытягивания монокристаллов молибдата цинка ZnMoO4 из расплава исходной шихты в тигле на затравку. В качестве исходной шихты используют смесь оксидов ZnO и МoO3, взятых в стехиометрическом соотношении с избытком М0О3 в количестве от 1,0 до 7,0 вес.%, а выращивание осуществляют при объемной скорости кристаллизации не более 0,4 см3/час. При выращивании методом Чохральского скорость вытягивания составляет 0,3-3,0 мм/час при осевом температурном градиенте на фронте кристаллизации 80-100°/см. При выращивание методом Киропулоса скорость вытягивания составляет не более 0,5 мм/час при поддержании диаметра кристалла от 80 до 95% диаметра тигля. Предложенный способ позволяет получать крупные монокристаллы (размером 1 см3 и более), имеющие оптическое качество, пригодные для работы в качестве сцинтилляционных детекторов и оптических элементов. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к выращиванию монокристаллов, а именно к выращиванию высокотемпературных неорганических монокристаллов, и может быть использовано в квантовой электронике и физике элементарных частиц, в частности для создания детекторов процесса двойного безнейтринного бета-распада.

Наиболее близким к изобретению является способ, описанный в статье [Н.Н.Соловьев, М.Л.Мейльман, К.А.Кувшинова, А.Г.Смагин, В.Г.Козлов, «Электронный парамагнитный резонанс и структура кристаллов молибдата цинка ZnMoO4». Журнал структурной химии, т.20, №3, с.448-455 (1979)], в которой кристаллы для исследований были выращены методом Чохральского из расплава при атмосферном давлении. Однако исследованные кристаллы имели размеры порядка 2-5 мм, недостаточные для использования в сцинтилляционных детекторах. Это обстоятельство определяет основной недостаток вышеуказанного способа.

Техническим результатом изобретения является получение крупных монокристаллов ZnMoO4 (размером 1 см и более), имеющих оптическое качество, пригодных для работы в качестве сцинтилляционных детекторов и оптических элементов.

Технический результат достигается способом выращивания монокристаллов молибдата цинка ZnMoO4 из расплава исходной шихты в тигле вытягиванием на вращающуюся затравку. Способ отличается тем, что в качестве исходной шихты используют смесь оксидов ZnO и МоO3, взятых в стехиометрическом соотношении с избытком MoO3 в количестве от 1,0 до 7,0 вес.% сверхстехиометрии для компенсации потерь оксида молибдена, возникающих вследствие его испарения в процессе роста. Выбор интервалов концентраций обуславливается условиями кристаллизации (температурные градиенты в зоне кристаллизации, площадь свободной поверхности расплава, продолжительность ростового процесса). Согласно полученным экспериментальным данным, скорость испарения МоO3 при температуре роста кристалла составляет 0,025 г/ч·см2. При концентрации MoO3 в расплаве ниже 1,0 вес.% или выше 7,0 вес.% сверхстехиометрии имеет место рост поликристалла. Выращивание проводят при объемной скорости кристаллизации не более 0,40 см3/ч.

При выращивании методом Чохральского скорость вытягивания составляет 0,3-3,0 мм/час при осевом температурном градиенте на фронте кристаллизации 80-100°/см.

При выращиьании методом Киропулоса скорость вытягивания составляет не более 0,5 мм/час при поддержании диаметра кристалла от 80 до 95% диаметра тигля.

Способ иллюстрируется Фиг.1 и Фиг.2.

На Фиг.1 приведены фотографии монокристаллов молибдата цинка, выращенных методом Чохральского (а) и методом Киропулоса (б). На Фиг.2 приведены спектры люминесценции молибдатов цинка, лития-цинка и магния при возбуждении синхротронным излучением (длина волны 290 нм) при температуре 10К.

Пример 1. Исходную шихту получают из смеси компонентов ZnO и MoO3 (оба компонента марки ОСЧ), взятых в мольном отношении 1:1, методом твердофазного синтеза при 700°С в течение 6 часов в платиновой чашке в печи сопротивления на воздухе. Плавление шихты производят в платиновом тигле, который помещают в ростовую камеру установки «Кристалл-3М» с высокочастотным нагревом. Процесс выращивания кристалла проводится на воздухе при атмосферном давлении. Расплав молибдата цинка получают при температуре 1003±5°С. Затем температуру слегка снижают и проводят затравление и выращивание кристалла на затравку со скоростью вытягивания 0,3-3,0 мм/ч, скоростью вращения 1-100 об/мин и осевым температурным градиентом на фронте кристаллизации 80-1007 см. Скорость вытягивания выбирается с учетом диаметра кристалла так, чтобы не была превышена оптимальная объемная скорость кристаллизации 0,40 см3/ч. При осевом температурном градиенте более 100°/см объемная скорость кристаллизации должна быть снижена во избежание формирования в кристалле ростовых дефектов (рассеивающих центров, включений и трещин). При низких температурных градиентах трудно поддерживать стабильный диаметр растущего кристалла - технологичность процесса снижается. Данные по примерам 1-5 реализации способа получения монокристаллов молибдата цинка приведены в таблице. После окончания процесса роста кристалл отрывают от расплава и проводят послеростовой отжиг с постепенным снижением температуры в ростовой камере в течение 6-12 часов. Кристалл извлекается из ростовой камеры после полного остывания.

Пример 2. Исходную шихту получают из смеси компонентов ZnO и MoO3 (оба компонента марки ОСЧ), взятых в мольном отношении 1:1, методом твердофазного синтеза при 700°С в течение 6 часов в платиновой чашке в печи сопротивления на воздухе. Плавление шихты производят в платиновом тигле, который помещают в ростовую камеру установки «Кристалл-3М» с высокочастотным нагревом. Процесс выращивания кристалла проводится на воздухе при атмосферном давлении. Расплав молибдата цинка получают при температуре 1003±5°С. Затем температуру слегка снижают и проводят затравление и выращивание кристалла на затравку со скоростью вытягивания не более 0,5 мм/ч и скоростью вращения 1-100 об/мин, при этом диаметр кристалла поддерживают от 80 до 95% диаметра тигля (метод Киропулоса). Поддержание диаметра растущего кристалла близким к диаметру тигля обеспечивает малую величину свободной поверхности расплава, с которой происходит испарение MoO3. Концентрация избыточного оксида молибдена в расплаве в этом случае может быть снижена до 2,0 вес.% при сохранении стехиометрического состава растущего кристалла. При этом вероятность появления включений посторонних фаз в растущий кристалл снижается.

Из выращенных монокристаллов изготавливались образцы размером 10×10×1(5) мм, их поверхности полировались. Методом рентгеноспектрального микроанализа подтвержден фазовый состав - ZnMoO4. Оптическое качество характеризуется отсутствием пузырей, трещин, включений посторонних фаз, прозрачностью в области от 330 до 3100 нм. Кристаллы имеют размытую полосу поглощения с максимумом 445 нм. Цвет кристаллов - темно-оранжевый.

Методом рентгеноструктурного анализа определены параметры решетки выращенных кристаллов - a=9.6850Å, b=6.9691Å, c=8.3705Å, α=96.74°, β=106.87°, γ=101.73°, что согласуется с литературными данными (a=9.625, b=6.965, c=8.373, α=96°18', β=103°18' [Л.Н.Демьянец, В.В.Илюхин, А.В.Чичагов, Н.В.Белов, «О кристаллохимии изоморфных замещений в молибдатах и вольфраматах двухвалентных металлов». Неорганические материалы, т.3, №12, с.2221-2234 (1967)]).

Состав расплава V, мм/ч ω, об/мин Отжиг, ч Параметры кристалла Объемная скорость кристаллизации, см3 Результат
Стех. Вес.% MoO3
1 ZnMoO4 5 30 6 ⌀0=13 мм, 1=40 мм 0,66 Поликристалл
2 ZnMoO4 3,0 3 30 6 ⌀0=10 мм, 1=21 мм 0,23 Прозрачный. Без трещин и включений
3 ZnMoO4 5,0 3 30 6 ⌀0=13 мм, 1=36 мм 0,39 Прозрачный. Без трещин и включений
4 ZnMoO4 6,5 3 30 8 ⌀0=10 мм, 1=40 мм 0,23 Прозрачный. Включения по центру
5 ZnMoO4 2,0 0,3 5 12 ⌀0=32 мм, 1=21 мм 0,24 Прозрачный

Исследованы спектрально-люминесцентные свойства полученных кристаллов ZnMoO4. Получены спектры отражения и возбуждения люминесценции при возбуждении синхротронным излучением, определена полоса собственной люминесценции с максимумом на 610 нм.

Таким образом, технико-экономическая эффективность заявляемого способа получения монокристаллов молибдата цинка по сравнению с прототипом заключается в следующем:

- выращены крупные монокристаллы молибдата цинка диаметром до 30 мм, длиной до 40 мм, против 1-2 мм у прототипа;

- отсутствие радиоактивных изотопов цинка в ZnMoO4 позволяет избежать помех при регистрации двойного безнейтринного бета-распада;

- интенсивность люминесценции молибдата цинка выше, чем у других кристаллов молибдатов, не создающих помех при регистрации - Li2Zn(MoO4)2 и MgMoO4.

1. Способ выращивания монокристаллов молибдата цинка ZnMoO4 из расплава исходной шихты в тигле вытягиванием на затравку, отличающийся тем, что в качестве исходной шихты используют смесь оксидов ZnO и MoO3, взятых в стехиометрическом соотношении с избытком MoO3 в количестве от 1,0 до 7,0 вес.% сверх стехиометрии, а выращивание осуществляют при объемной скорости кристаллизации не более 0,4 см3/ч.

2. Способ по п.1, отличающийся тем, что выращивание осуществляют методом Чохральского со скоростью вытягивания 0,3-3,0 мм/ч при осевом температурном градиенте на фронте кристаллизации 80-100°/см.

3. Способ по п.1, отличающийся тем, что выращивание осуществляют методом Киропулоса со скоростью вытягивания не более 0,5 мм/ч при поддержании диаметра кристалла от 80 до 95% диаметра тигля.



 

Похожие патенты:

Изобретение относится к способам получения кристаллов, а именно к способу получения монокристаллов вольфрамата свинца, и может быть использовано при изготовлении сцинтилляционных элементов.

Изобретение относится к способам получения кристаллов, а именно к способу получения монокристаллов вольфрамата свинца, и может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений высоких энергий, работающих в условиях высоких дозовых нагрузок в трактах регистрации, требующих высокого временного разрешения.

Изобретение относится к способам получения кристаллов, а именно к способу получения монокристаллов вольфрамата свинца (далее PWO), и может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений высоких энергий, работающих в условиях высоких дозовых нагрузок в трактах регистрации, требующих высокого временного разрешения.

Изобретение относится к области квантовой электроники и может быть использовано при разработке лазеров инфракрасного диапазона. .

Изобретение относится к технике для регистрации и спектрометрии ионизирующих излучений, в частности к сцинтиляционным материалам. .

Изобретение относится к материаловедению и может быть использовано для создания управляемых функциональных устройств. .

Изобретение относится к области сцинтилляционных материалов, используемых для регистрации и спектрокопии ионизирующих излучений. .

Изобретение относится к сцинтилляционной технике и обеспечивает увеличение светового выхода, улучшение энергетического разрешения и стабилизации сцинтилляционных параметров кристаллов.

Изобретение относится к технологии выращивания тугоплавких монокристаллов, в частности сапфира, рубина, из расплава с использованием затравочного кристалла. .
Изобретение относится к области выращивания монокристаллов из расплавов и может быть использовано на предприятиях химической и электронной промышленности для выращивания монокристаллов сапфира 1-6 категории качества методом Киропулоса из расплавов на затравочный кристалл.

Изобретение относится к сцинтилляционным материалам и может быть использовано в ядерной физике, медицине и нефтяной промышленности для регистрации и измерения рентгеновского, гамма- и альфа-излучений; неразрушающего контроля структуры твердых тел; трехмерной позитрон-электронной и рентгеновской компьютерной томографии и флюорографии.

Изобретение относится к области выращивания монокристаллов из расплавов и может быть использовано для создания устройств для выращивания монокристаллов сапфира. .

Изобретение относится к технологии выращивания из расплавов объемных монокристаллов сапфира и направлено на повышение срока службы элементов конструкции. .

Изобретение относится к технологии выращивания из расплавов монокристаллов сапфира методом кристаллизации из расплава. .

Изобретение относится к устройствам выращивания крупногабаритных объемных профилированных монокристаллов из расплавов, например, сапфира по методам Чохральского, Киропулоса.

Изобретение относится к устройствам выращивания профилированных монокристаллов из расплавов на затравочном кристалле, например, сапфира, по методам Чохральского, Киропулоса.

Изобретение относится к способу и устройству для выращивания монокристалла высокого качества. .

Изобретение относится к технологии выращивания монокристаллов из растворов-расплавов и может найти применение при получении монокристаллов литиевой феррошпинели LiFe5O8 для устройств на основе магнитных возбуждений.
Изобретение относится к области технологии получения монокристаллического кремния методом выращивания из расплава. .
Наверх