Способ олигомеризации

Изобретение относится к способу олигомеризации н-бутенов, который характеризуется тем, что включает подачу н-бутенов в реактор с дистилляционной колонной с катализаторами, состоящими из слоя цеолитного катализатора ZSM-57, контактирование указанных н-бутенов с указанным цеолитным катализатором ZSM-57 в условиях олигомеризации при давлении от 300 до 400 ф/кв.д и температуре в диапазоне от 240 до 320°F, таким образом каталитическое взаимодействие с указанными н-бутенами с образованием олигомеров и одновременным разделением и извлечением указанных олигомеров. Применение данного способа позволяет получить более высокую конверсию за один проход, чем в других процессах с повышенной селективностью, проводить работы в менее строгих условиях температуры и давления, а также позволяет увеличить срок службы катализатора. 11 з.п. ф-лы, 5 табл., 1 ил.

 

Предпосылки изобретения

Область техники

Настоящее изобретение относится к олигомеризации алкенов, например олигомеризации нормальных бутенов, для получения в основном октенов. Более конкретно изобретение относится к олигомеризации бутена-1 и бутена-2, содержащихся в потоке смеси C4, который был обеднен изобутенами, таком, как с установки МТБЭ или с установок очистки изобутена. Более конкретно изобретение относится к олигомеризации бутенов на цеолитном катализаторе ZSM-57 в реакторе с дистилляционной колонной.

Родственный уровень техники

Поток смеси C4 с установки МТБЭ или с установки очистки изобутена, часто называемый рафинатным потоком, содержит разбавленные нормальные бутены, в частности, бутен-1 и бутен-2. Эти потоки в прошлом димеризовали в трубчатых реакторах, содержащих такие катализаторы, как нанесенная фосфорная кислота (SPA) и цеолиты ZSM-22 и ZSM-57. Однако условия реакции были жесткими, например, температура от 330 до 482°F и избыточное давление от 1000 до 1215 ф/кв.д.

Кроме условий реакции, катализаторы раньше имели короткий срок службы. SPA-катализатор давал всего около 333 тонн олигомеров на тонну катализатора и имел срок нормальной непрерывной эксплуатации 2-3 недели, после чего от катализатора нужно было отказываться. Цеолитные катализаторы имеют больший срок службы (3-4 месяца), но они теряют активность и должны регенерироваться автономно при существенных затратах.

Селективность вышеупомянутых катализаторов ниже идеальной. Желаемыми продуктами из бутенов являются октены, которые могут быть превращены в изонониловые спирты. Высшие олигомеры, такие как C12-олефины, полезны в той мере, в какой в них могут быть обнаружены полезные продукты, например, тридециловый спирт или изопарафиновый растворитель.

Типичные результаты по селективности вышеуказанных катализаторов в трубчатых реакторах показаны ниже в таблице I:

Таблица I
Катализатор SPA ZSM-22 ZSM-22 ZSM-57 ZSM-57
@94%* @50%* @94%* 50%*
Селективность, мол.%
Парафин <1 6 6 <1 <1
C6-олефин 1 <1 <1 <1 <1
C7-олефин 4 <1 <1 <1 <1
C8-олефин 45 50 70 78 88
C9-олефин 9 1,5 <1 3 <1
C10-C11-олефин 13 2 <1 1 <1
C12-олефин 22 27 18 10 7
C12+-олефин 4 13 5 7 2
*Конверсия олефина за проход

Наконец, следует отметить, что изобутены олигомеризовали на кислотных катализаторах из катионообменной смолы в реакторах с дистилляционной колонной в комбинации с реакторами с кипением, описанными в патентах США 4242530 и 5003124.

Настоящее изобретение дает более высокую конверсию за проход, чем в других процессах с повышенной селективностью. Следующее преимущество заключается в том, что настоящий способ работает в менее строгих условиях по температуре и давлению, чем предшествующие промышленные способы олигомеризации, использующие катализатор ZSM-57. Еще одним преимуществом является намного больший период эксплуатации до выгрузки катализатора для регенерации и потенциально больший срок службы катализатора. Особенностью настоящего изобретения является то, что катализатор может быть регенерирован и улучшен in situ, обеспечивая тем самым еще большую эффективность и экономию средств.

Суть изобретения

Кратко, настоящее изобретение представляет собой способ олигомеризации алкенов, включающий подачу алкенов в реактор с дистилляционной колонной, содержащий слой цеолитного катализатора ZSM-57, контактирование указанных алкенов с указанным цеолитным катализатором ZSM-57 в условиях олигомеризации, тем самым приводя указанные алкены в каталитическую реакцию с образованием олигомеров при одновременном разделении и извлечении указанных олигомеров. Предпочтительно алкены содержат линейные алкены, имеющие от 3 до 8 атомов углерода, такие как C4-алкены, предпочтительно н-бутены.

В предпочтительном варианте осуществления смешанные бутены, такие как рафинаты, могут быть легко олигомеризованы на цеолитном катализаторе ZSM-57 в реакторе с дистилляционной колонной при очень высокой селективности по октенам (>90 мол.%). Олигомеризация предпочтительно проводится в условиях, которые благоприятствуют димеризации по сравнению с образованием более длинноцепочечных олигомеров, предпочтительно при избыточных давлениях от 300 до 400 ф/кв.д. и температурах в интервале от 240 до 320°F с конверсиями до примерно 97 мол.%.

Чтобы использовать преимущества настоящего способа, смешанные бутены не должны содержать определенных компонентов, которые отравляют катализатор ZSM-57, таких как диметиловый эфир (ДМЭ), некоторые соединения серы, например, диметилсульфид и бутадиен. Это требуется также для предшествующих некаталитических процессов перегонки, использующих ZSM-57. Все нежелательные материалы могут быть удалены обычным образом путем перегонки, хемосорбции серы и гидрирования бутадиена.

В случаях, когда слой, защищающий от серы, не выдерживал и соединения серы отравляли катализатор ZSM-57, катализатор может быть регенерирован in situ путем промывки нормальным гептаном. Было найдено, что регенерация увеличивает активность катализатора.

Краткое описание чертежа

На чертеже показана упрощенная блок-схема предпочтительного варианта осуществления изобретения.

Описание предпочтительного варианта осуществления

Питание в настоящем процессе предпочтительно предварительно обрабатывают для удаления таких загрязнений, как ДМЭ, бутадиен и соединения серы. Допустимые уровни этих примесей следующие: ДМЭ <1 вес.ч./млн; всего соединений серы <1 вес.ч./млн, и 1,3-бутадиен <10 вес.ч./млн. ДМЭ можно удалить перегонкой, которую удобно объединить с селективным гидрированием 1,3-бутадиена в реакторе с дистилляционной колонной. В реакторе с дистилляционной колонной используется такой катализатор гидрирования, как палладий или никель, в мягких условиях. ДМЭ отбирается как головной продукт, а остаток отбирается как кубовый продукт. Соединения серы могут быть удалены хемосорбцией на восстановленных цельных никелевых катализаторах, таких как Sud-Chemie C46 или Engelhard D-4130.

Типичное питание в способе по настоящему изобретению содержит разбавленные нормальные бутены в потоке смеси С4, который типично был обеднен изобутеном. Обычно, указанный поток смеси С4 содержит менее чем 10 моль% изобутена.

Ниже в таблице II перечислены компоненты такого типичного потока.

Таблица II
Углеводороды, вес.% Соединение серы, вес.ч./млн
Этан 00,09 H2S 0,000
Этилен 00,00 Карбонилсульфид 0,401
Пропан 00,87 Метилмеркаптан 0,756
Пропилен 00,17 Этилмеркаптан 1,835
Изобутан 24,00 Диметилсульфид 1,178
н-Бутан 22,73 Диметилдисульфид 1,057
Пропадиен 00,00 Метилэтилдисульфид 1,925
Бутен-1 20,07 Диэтилдисульфид 1,386
Изобутен 01,07 Сера, всего 8,538
Транс-бутен-2 17,96
Цис-бутен-2 11,71
1,3-Бутадиен 0,04
Изопентан 01,16
Пентен-1 00,06
ДМЭ 00,07
Бутены, всего 50,80

Применение реактора с дистилляционной колонной известно. Катализатор помещают на тарелки или объединяют в дистилляционную схему и помещают в дистилляционную колонну. Селективное гидрирование диолефинов, таких как пропадиен и 1,3-бутадиен, в реакторе с дистилляционной колонной описано в патенте США 6169218, который введен сюда в виде ссылки. В настоящем изобретении фракционная перегонка проводится одновременно с селективным гидрированием 1,3-бутадиена для удаления примеси ДМЭ в виде головного продукта.

Катализатор, чтобы быть действенным, должен находиться в такой форме, чтобы обеспечивать контакт газа с жидкостью. Для этой цели имеется много форм каталитических структур, которые были описаны в разное время в патентах США 5266546, 4731229 и 5073236. Наиболее предпочтительная структура катализатора раскрыта в патенте США 5730843, который указан здесь в виде ссылки.

Считается, что в настоящих реакциях каталитическая перегонка выгодна, во-первых, потому что реакция протекает одновременно с перегонкой, начальные продукты реакции и другие компоненты потока удаляются из зоны реакции как можно быстрее, что снижает вероятность побочных реакций. Во-вторых, так как все компоненты кипят, температура реакции контролируется точкой кипения смеси при давлении системы. Теплота реакции просто создает большее кипение, но не увеличивает температуру при заданном давлении. В результате, регулируя давление системы, можно достичь существенного контроля над скоростью реакции и распределением продуктов. Также регулирование производительности (время пребывания = почасовая объемная скорость жидкости-1) дает дополнительный контроль над распределением продукта и, до некоторой степени, контроль над побочными реакциями, такими, как олигомеризация. Следующим выигрышем, который эта реакция может получить от каталитической перегонки, является эффект промывки, который обеспечивается катализатору внутренней флегмой, снижая тем самым образование полимеров и коксование. Внутренняя флегма может меняться в диапазоне от 0,2 до 20 L/D (вес жидкости сразу под слоем катализатора/вес дистиллята) и дает превосходные результаты.

Обратимся теперь к чертежу, на котором показана упрощенная блок-схема предпочтительного осуществления изобретения. Поток смеси C4 подается вместе с водородом по подводящей линии 101 в первый реактор 10 с дистилляционной колонной, содержащий слой 12 катализатора гидрирования. В реакторе 10 с дистилляционной колонной бутадиены селективно гидрируются в бутены, и одновременно путем фракционной перегонки отделяется ДМЭ и удаляется как головной продукт по линии 102. Кубовый продукт, содержащий бутены и менее 10 вес.ч./млн бутадиена, удаляется по линии 103 и подается в реактор 20, содержащий слой 22 катализатора, который хемосорбирует соединения серы.

Поток, выходящий из реактора 20, содержащий менее 1 вес.ч./млн всех соединений серы, удаляется по линии 104 и подается, вместе с рециклом из линии 108, по линии 105 во второй реактор 30 с дистилляционной колонной, содержащий слой 32 цеолитного катализатора ZSM-57. Часть бутенов в потоке олигомеризуется до высших олефинов, предпочтительно октенов, в слое катализатора. Более высококипящие олигомеры и некоторые бутены удаляются как кубовые продукты по линии 107. Некоторые бутены могут отбираться как головной продукт и возвращаться как обратный поток (не показано) с продувкой из более легкого материала, отобранной по линии 106, чтобы предотвратить образование более легкого материала.

Кубовый продукт по линии 107 подается на бутаноотгонную колонну 40, где все C4 удаляются как головной продукт и возвращаются во второй реактор 30 с дистилляционной колонной для дальнейшего превращения. Целевые олигомеры удаляются из бутаноотгонной колонны как кубовый продукт по линии 109 для дальнейшего разделения.

Пример 1

Двадцать один фунт цеолитного катализатора ZSM-57 загружали в реактор с дистилляционной колонной, использующий каталитическую структуру, показанную в патенте США 5730843. Типичное питание, какое показано выше в таблице II, подавали в реактор после обработки для удаления ДМЭ, бутадиена и серы до допустимых уровней. Условия реактора и результаты показаны ниже в таблице III.

Таблица III
Часы работы 392 640 742 804 888
Питание, ф/ч 20 20 20 20 30
Флегма, ф/ч 30 30 30 30 45
Изб. давление, ф/кв.д. 300 350 375 400 350
Темп.°F 245-255 271-286 274-289 293-313 299-317
Конв. в восх. потоке, % 66,68 93,88 97,03 98,23 86,88
Селективность, вес.%
C6-олефины 0,1286 0,2083 0,1612 0,2108 0,0912
C8-олефины 96,6607 90,8567 92,8994 92,8113 93,3147
C10-олефины 0,2383 0,5438 0,2862 0,2564 0,2371
C12-олефины 2,9724 7,7808 6,4369 6,4651 6,2268
C12+-олефины 0,000 0,6104 0,2164 0,2564 0,1302

Пример 2

Катализатор был регенерирован in situ путем промывки нормальным гептаном в следующих условиях:

Таблица IV
Изб. давление, ф/кв.д. 250
Температура, °F 460
Подача н-гептана, ф/ч 15
н-Гептан, головной продукт, ф/ч 10
н-Гептан, кубовый продукт, ф/ч 10
Катализатор, ф 21
Почасовая объемная скорость 1,4
Время обработки, часы 50

Подача смеси C4 в реактор возобновлялась, и сравнение регенерированного и свежего катализатора показано ниже в таблице V.

Таблица V
Катализатор Свежий Регенерированный
Подача, ф/ч 20 20
Флегма, ф/ч 30 30
Изб. давление, ф/кв.д. 400 300
Темп.°F 293-313 220-230
Конв. в восх. потоке, % 98,23 99,95
Селективность, вес.%
C6-олефины 0,2108 0,1931
C8-олефины 92,8113 93,4661
C10-олефины 0,2564 0,5570
C12-олефины 6,4651 5,6407
C12+-олефины 0,2564 0,1481
Константа активности, k 0,4696 2,7807
Производ. катализатора, г-моль/ч на ф кат. 2,5342 3,5278

Неожиданно оказалось, что регенерированный катализатор вел себя лучше, чем свежий катализатор.

1. Способ олигомеризации н-бутенов, включающий подачу н-бутенов в реактор с дистилляционной колонной с катализаторами, состоящими из слоя цеолитного катализатора ZSM-57, контактирование указанных н-бутенов с указанным цеолитным катализатором ZSM-57 в условиях олигомеризации при давлении от 300 до 400 ф/кв.д и температуре в диапазоне от 240 до 320°F, таким образом каталитическое взаимодействие с указанными н-бутенами с образованием олигомеров и одновременным разделением и извлечением указанных олигомеров.

2. Способ олигомеризации по п.1, включающий подачу С4-потока, содержащего нормальные бутены, в реактор с дистилляционной колонной, содержащий слой цеолитного катализатора ZSM-57, контактирование указанного С4-потока с указанным цеолитным катализатором ZSM-57 путем перегонки, тем самым приведение части нормальных бутенов в каталитическую реакцию друг с другом с образованием октенов, при одновременном удалении указанных октенов из указанного реактора с дистилляционной колонной как кубовых продуктов.

3. Способ по п.2, причем непрореагировавшие нормальные бутены покидают указанный реактор с дистилляционной колонной как головной продукт, и часть указанных нормальных бутенов возвращают в указанный реактор с дистилляционной колонной как обратный поток.

4. Способ по п.2, причем указанный кубовый продукт содержит непрореагировавшие нормальные бутены, и указанные непрореагировавшие нормальные бутены удаляют из указанного кубового продукта фракционной перегонкой и возвращают в указанный реактор с дистилляционной колонной.

5. Способ по п.2, причем указанный поток смеси C4 был обработан для удаления диметилового эфира, бутадиена и органических соединений серы.

6. Способ по п.5, причем указанный поток C4 содержит менее чем 1 вес.ч./млн диметилового эфира, менее 1 вес.ч./млн органических соединений серы и менее 10 вес.ч./млн бутадиена.

7. Способ по п.6, причем конверсия нормальных бутенов составляет более 65 мол.%, указанные димеры являются октенами, и селективность по указанным октенам превышает 90 мол.%.

8. Способ по п.6, причем конверсия нормальных бутенов составляет более 90 мол.%, указанные димеры являются октенами, и селективность по указанным октенам превышает 90 мол.%.

9. Способ по п.6, причем указанный катализатор был отравлен органическими соединениями серы для снижения его активности и селективности, и причем способ включает, кроме того, этапы прерывания указанной подачи C4, промывание указанного цеолитного катализатора ZSM-57 нормальным гептаном и возобновление указанной подачи C4.

10. Способ по п.6, причем указанный катализатор был промыт нормальным гептаном до подачи указанного потока С4.

11. Способ по п.6, где часовая объемная скорость составляет от 1 до 1,5 фунта подачи С4 на фунт катализатора в час.

12. Способ по п.9, причем указанное промывание проводится при примерно 460°F, примерно 250 ф/кв.д. изб. и часовой объемной скорости подачи примерно 1,4 фунтов нормального гептана на фунт катализатора в час в течение приблизительно 50 ч.



 

Похожие патенты:

Изобретение относится к модифицированному цеолиту NU-86, содержащему кремний и по меньшей мере один элемент Т, выбранный из группы, состоящей из алюминия, железа, галлия и бора.
Изобретение относится к способам получения димеров альфа-метилстирола, в частности к получению жидких (4-метил-2,4-дифенилпентен-1,2) и твердых (1,1,3-триметил-3-фенилиндан) димеров альфа-метилстирола, которые могут использоваться в качестве трансформаторных и конденсаторных масел, основы для фрикционных жидкостей, пластификаторов для каучуков и пластмасс.
Изобретение относится к вариантам способа получения углеводородов, имеющих число атомов углерода в цепи Cn, где n 2 и n 20, включающим:образование галогенированного углеводорода, при реакции углеводородного реагента, имеющего число атомов углерода в цепи Cm, где m n, m 1 и m 10 с галогенирующим агентом;образование углеводородного продукта, имеющего число атомов углерода в цепи Cn, где n 2 и n 20, при контакте галогенированного углеводорода с каталатическим реагентом оксида металла;выделение углеводородного продукта; ирегенерирование каталитического реагента.
Изобретение относится к способу получения разветвленных олефинов, который включает дегидрирование изопарафиновой композиции, содержащей 0,5% или менее четвертичных алифатических атомов углерода, на подходящем катализаторе, указанная изопарафиновая композиция включает парафины с количеством углеродов в диапазоне от 7 до 35, причем указанные парафины, по меньшей мере часть их молекул, являются разветвленными, среднее количество ответвлений на молекулу парафина составляет от 0,7 до 2,5, и ответвления включают метальные и, необязательно, этильные ветви, указанная изопарафиновая композиция получена путем гидроизомеризации парафина, а указанные разветвленные олефины имеют содержание четвертичных углеродов 0,5% или менее, причем парафины получены способом Фишера-Тропша.

Изобретение относится к сырьевой композиции, к способу олефинового метатезиса, к способу получения сложного полиэфирполиэпоксида и к способу получения , -оксикислоты, сложного , -оксиэфира и/или , -диола с укороченной цепью.

Изобретение относится к способу получения углеводородов С 2-С3 высокотемпературным каталитическим окислительным превращением метана, заключающемуся в подаче в реактор, в который помещен катализатор, а свободный объем которого заполнен инертной насадкой, исходной газовой смеси, содержащей смесь метана и молекулярного кислорода, со скоростью 50000-70000 мл/г/ч, причем катализатор включает в свой состав ионы щелочного металла, марганца, вольфрама и оксид кремния при мольных соотношениях M:W:Mn:Si, где M - Na, или К, или Rb, или Cs, равных 1,8-2,2:1:1,9-2,3:89-92, и характеризуется присутствием в нем вольфрама в степени окисления W6+, марганца - в степенях окисления Mn 7+, Mn6+, Mn3+ , при этом катализатор получают путем термообработки при 200°С и последующего прокаливания при температуре 795-799°С исходной твердой порошкообразной смеси, состоящей из солей и/или оксидов вольфрама, марганца, щелочного металла и SiO2 , взятых в вышеуказанных мольных соотношениях в расчете на моль атомов вольфрама, марганца, щелочного металла и кремния.
Изобретение относится к способу получения олефинов из метана, включающему частичное сжигание смеси метана, водорода, кислорода и не обязательно углеводородов, которые отличны от метана в контакте с катализатором, способным поддерживать горение за нормальным верхним пределом воспламеняемости топлива, где они взаимодействуют с образованием продукта, включающего один или несколько олефинов, причем в смеси, вступающей в контакт с упомянутым катализатором, способным поддерживать горение за нормальным верхним пределом воспламеняемости топлива, может содержаться меньше 20 мольных % (в пересчете на общее количество имеющихся углеводородов) тех углеводородов, которые отличны от метана; где в смеси, вступающей в контакт с катализатором, объемное отношение водорода к кислороду находится в пределах от 5:1 до 1:1 и при этом метан и кислород подают в установку автотермического крекинга в смеси при среднечасовой скорости подачи газа (ССПГ) больше 70000 ч-1 .

Изобретение относится к способу получения низших олефинов из метилхлорида, включающему пропускание исходной газовой реакционной смеси, содержащей по меньшей мере метилхлорид, через по меньшей мере один слой катализатора, имеющего активные центры, которые характеризуются в ИК спектрах адсорбированного аммиака наличием полосы поглощения с волновыми числами в диапазоне =1410-1440 см-1, содержащего активный компонент и высококремнеземистый носитель, характеризующийся наличием в спектре ЯМР29 Si линий с химическими сдвигами -100±3 м.д.

Изобретение относится к способу переработки изобутенсодержащей углеводородной смеси и спирта C1 или С 2, включающему совместные химические превращения изобутена и указанного спирта с образованием алкилтретбутилового эфира, димеров, тримеров изобутена и возможно содимеров и тримеров изобутена с н-бутенами в реакционной(ых) зоне(ах) при температуре от 30 до 100°С в присутствии сильнокислотного твердого катализатора и возможно примеси воды при общем молярном отношении спирта и изобутена в подаваемом(ых) в реакционную(ые) зону(ы) потоках от 0,1:1 до 0,9:1; отделение от реакционной смеси ректификацией как минимум потока, содержащего преимущественно непрореагировавшие углеводороды С4, и возможно последующую ректификационную отгонку из остающей(их)ся реакционной(ых) смеси(ей) потока, содержащего алкилтретбутиловый эфир, и потока, содержащего преимущественно димеры изобутена, возможно далее гидрируемого, при котором путем ограничения температуры и/или времени контакта с катализатором и возможно подачи дополнительного количества спирта как минимум в последнюю реакционную зону в выводимой из реакционной зоны смеси, включающей продукты химических превращений, поддерживают количество спирта C1 или C 2 в концентрации не менее 0,33% мас., предпочтительно не менее 0,5% мас., но не превышающее его суммарного количества, допускаемого в целевых продуктах и отгоняемого с содержащимися в указанной реакционной смеси углеводородами С 4, причем при отгонке реакционных продуктов в зависимости от состава поддерживают давление от 0,025 до 0,15 МПа и температуру в кубе(ах) от 80 до 180°С.
Изобретение относится к способу получения катализатора для превращения оксигенатов в олефины
Изобретение относится к способу получения олефинов путем температурной обработки жидкого или газообразного углеводородного сырья, в качестве которого используют предельный углеводород линейного строения CnH2n+2, где: n>1, или смесь таких углеводородов, взятых в любых сочетаниях, характеризующемуся тем, что объемный нагрев смеси катализатора с сырьем производят селективно в присутствии гранулированного твердого катализатора, а именно: необходимую для протекания реакции энергию подводят, преимущественно, к катализатору, в объеме частиц которого энергия выделяется в виде теплоты, причем в качестве источника энергии используют СВЧ излучение, а в качестве катализатора - материал, имеющий более высокую, чем углеводородное сырье, способность поглощать СВЧ излучение
Наверх