Способ диагностирования состояния сорбента

Изобретение относится к неорганической химии и, в частности, к технологиям диагностирования материалов химической и атомной промышленности. Степень отработки и определение остаточного ресурса химического сорбента - мерсеризованной древесины - осуществляют путем контроля изменения его цвета от белого и оттенков коричневого до черного по мере насыщения поглотителя кислыми соединениями в зависимости от содержания поглощаемого компонента в сорбенте, равного от 0 до 45% (мас.) при степени отработки сорбента от 0 до 100%, при этом древесное волокно является цветовым индикатором. Достигается простота и эффективность контроля состояния сорбента, по визуальному виду которого можно определить критерий его отработки и степень насыщения адсорбатом. 3 з.п. ф-лы, 1 пр., 3 табл., 4 ил.

 

Изобретение относится к неорганической химии и, в частности, к технологиям диагностирования материалов химической и атомной промышленности.

Твердые химические вещества часто используют в качестве сорбентов для улавливания газообразных соединений. Сорбентами могут быть соли (фториды, карбонаты, сульфаты металлов и др.), оксиды (алюминия, кремния, кальция, магния и др.), гидроксиды (кальция, магния, железа и др.), имеющие, как правило, в массе белый цвет, а также органические вещества (иониты, уголь, древесина и др.) [Баскин З.Л. Промышленный экологический контроль. Хроматографические методы анализа фтора и его соединений. - М.: Энергоатомиздат, 2008, с.31-34].

Как правило, при поглощении газов сорбентами визуально система не претерпевает каких-либо изменений [Галкин Н.П. и др. Улавливание и переработка фторсодержащих газов. - М.: Атомиздат, 1975, с.83-86, 142-148]. Например, в процессе поглощения газообразных веществ кислого характера, например HF, UF6 и др., на сорбентах на основе фторидов щелочных или щелочно-земельных металлов цвет конечных веществ (NaHF2, LiHF2, Na2UF8, BaUF8 и др.) неизменен, т.е. остается белым. По виду полученного вещества невозможно определить степень его насыщения поглощаемым компонентом. Эти характеристики можно вычислить двумя путями: 1) химический анализ материала на содержание поглощенного компонента и 2) содержание поглощаемого компонента в газе за слоем сорбента свыше заданного проскокового значения. И в том, и другом случае требуется достаточно продолжительное время для оценки степени насыщения сорбента и принятия решения об его регенерации или замене. Аналогичная картина наблюдается при очистке воздуха, например, от сернистого или углекислого газа с применением гидроксидов или оксидов. По внешнему виду нельзя определить степень отработки сорбента, т.к. цвет исходного и насыщаемого сорбента одинаковый.

Однако известно, что при взаимодействии химических соединений во многих случаях меняется цвет системы при переходе от исходных реагентов к продуктам реакций. Так, например, раствор перманганата калия, имеющий фиолетовый цвет, при восстановлении до манганата калия приобретает зеленую окраску. Или при действии плавиковой кислоты на растворы солей уранила, имеющих лимонно-желтую окраску, образуется темно-зеленый тетрафторид урана. Подобные примеры можно приводить практически бесконечно.

Известно также, что при титриметрическом определении того или иного иона, находящегося в растворе, для фиксации точки эквивалентности в титруемый раствор добавляют две-три капли индикатора, как правило, представляющего собою органическое соединение, которое меняет свой цвет при изменении pH раствора [Гиллебранд В.Ф. и др. Практическое руководство по неорганическому анализу. Пер. с англ. Под ред. Ю.Ю.Лурье. - М.: ГНТИХЛ, 1957, с.183, 196]. Например, при определении кислотности в аликвоту добавляют индикатор - бесцветный фенолфталеин. В процессе титрования раствором щелочи в точке эквивалентности изменяется цвет раствора на малиновый, что означает полную нейтрализацию в исходном растворе ионов водорода, т.е. практическое их исчезновение и появление в растворе избыточных ионов гидроксила. В случае обратного процесса, т.е. определения щелочности раствора с использованием фенолфталеина, цвет титранта изменяется от малинового до бесцветного.

Таким образом, изменение цвета системы в вышеописанных примерах используют в качестве критерия диагностирования окончания того или иного процесса или, иными словами, изменение цветности системы сигнализирует об исчерпании одного из исходных соединений, что является, в свою очередь, критерием окончания процесса.

Сорбенты, получаемые обработкой древесины растворами щелочи по способам [SU №710601; SU №1255175; RU №2283175; RU №2283176, МПК B01J 20/24], содержат в своем составе NaOH. После выдержки древесины в растворе щелочи и высушивания материал имеет цвет от светло-бежевого до светло-коричневого в зависимости от породы исходной древесины с белым налетом адсорбированной сухой щелочи.

На рис.1 и 2 показана мерсеризованная древесина.

На рис.1: На рис.2:
Содержание NaOH 36-40% (мас.). Содержание NaOH 46-48% (мас.).
Содержание H2O 10-12% (мас.). Содержание H2O 9-11% (мас.).

Технический результат настоящего изобретения заключается в нахождении простого и эффективного способа контроля состояния сорбента, по визуальному виду которого можно определить критерий его отработки и степень насыщения адсорбатом.

Технический результат предлагаемого изобретения достигается тем, что степень отработки и определение остаточного ресурса химического сорбента - мерсеризованной древесины - осуществляют путем контроля изменения его цвета от белого и оттенков коричневого до черного по мере насыщения поглотителя кислыми соединениями в зависимости от содержания поглощаемого компонента в сорбенте, равного от 0 до 45% (мас.) при степени отработки сорбента от 0 до 100%, при этом древесное волокно является цветовым индикатором.

При содержании поглощаемого соединения до 30 мас.% цвет сорбента изменяется от оттенков коричневого до равномерного серого при степени отработки 80-85%.

При содержании поглощаемого соединения в пределах 30-39% (мас.) материал состоит из приблизительно равного количества серых и черных частиц, а степень его отработки равна 85-95%.

При содержании поглощаемого соединения более 40% (мас.) цвет сорбента становится преимущественно черным при степени отработки, приближающейся к 100%.

Критерием отработки сорбента является содержание поглощаемого компонента, равное 31-35% (мас.), а материал состоит преимущественно из серых частиц с черными вкраплениями.

Процесс поглощения кислых газов на подобных сорбентах заключается в следующем. Газообразное соединение, например HP, взаимодействует первоначально с адсорбированной на поверхности сорбента щелочью

HF+NaOH=NaF+H2O

По исчерпании адсорбированной щелочи HF начинает реагировать с химически связанной с целлюлозой (основа древесного волокна) щелочью

RcellOH·NaOH+HF=RcellOH·+NaF+H2O

Вследствие рыхлости образованного слоя фторида натрия и наличия воды HF, наконец, начинает взаимодействовать с целлюлозой, являющейся многоатомным спиртом со слабощелочным характером

RcellOH+HF=RcellF·+H2O

Как показано нашими исследованиями, в процессе поглощения HF цвет материала существенно меняется только на последней стадии работы сорбента от исходного, т.е. белого и светло-коричневого, до серого и черного в зависимости от степени насыщения его продуктами реакций нейтрализации (табл.1). Древесное волокно является цветовым индикатором отработки сорбента.

На рис.3 и 4 показан древесный материал, содержащий различное количество фтора.

Рис.3 - Образец ХП-МД, содержащий 12,5% (маc.) фтора:

Рис.4 - Отработавший поглотитель:

Темные частицы (лобовой слой) содержат 38-42% (маc.) фтора.

Светлые частицы (выходной слой) содержат от 0 до 1,8% (маc.) фтора.

Таблица 1
Физико-химическое состояние отработавшей древесины
Номер образца Слой Изменение массы, % (маc.) Содержание, % (маc.) Внешний вид (цвет)
NaOH F
Исх. все 0 30,6 0 Кремовый
1 лобовой 0 27,9 Серый
средний +26,7 22,8 3,0 Исходный с серыми вкраплениями
выходной 27,7 0,1 Исходный
2 лобовой 0 33,2 Серо-черный
средний +46,0 0 30,7 Серый с черными вкраплениями
выходной 15,0 6,2 Исходный с отдельными серыми частицами
3 лобовой 0 42,8 Черная, влажная масса, запах формалина
средний +110,0 0 46,6 То же
выходной 0 36,3 Серо-черная масса (~50%×50%), запах формалина

Таким образом, по изменению цвета древесины, подвергающейся воздействию кислых соединений, можно определить степень отработки или степень остаточного ресурса сорбента. В данном случае древесина является индикатором, по изменению цвета которого определяют степень насыщения сорбента адсорбатом.

В результате проведенных нами исследований по насыщению химических сорбентов, на (в) древесную основу которых нанесен (введен) твердый гидроксид натрия, фторидом водорода в динамических условиях были получены следующие данные.

После мерсеризации древесины 25%-ным раствором NaOH в ней содержится 30-48% (мас.) щелочи (в зависимости от времени процесса и вида древесины), как адсорбированной на поверхности, так и химически связанной с древесным волокном. Максимально возможное поглощенное содержание фтора оказалось равным 57% (мас.). Физическое состояние - волглая (влажная) масса черного цвета. В этом полностью отработанном состоянии сорбент, точнее то, во что он превратился, является вторичным источником вредных химических веществ, в частности, ощущался резкий запах формальдегида, что было также подтверждено качественным химическим анализом. Формальдегид начинает выделяться из массы поглотителя при содержании фтора, равного 45-47% (мас.). Таким образом, если принять, что полная степень отработки поглотителя достигается при достижении содержания фтора в нем величины 45% (мас.), т.е. начало выделения вторичных ВХВ, то степень отработки можно определить по данным, представленным в табл.2.

Таблица 2
Определение степени отработки
№ пп Содержание фтора, % (мас.) Содержание NaOH, % (мас.) Цвет Степень отработки, %
1 0 40-45 Светло-коричневый 0
2 25-30 3-5 Серый 80-90
3 31-35 0 Серые и черные частицы 90-95
4 >40 0 Преимущественно черный 100

Таким образом, исходя из данных табл.2 отработанным химическим сорбентом на основе мерсеризованной древесины следует считать материал, состоящий приблизительно из равного количества серых и черных частиц и содержащего не более 35% (мас.) фтора. Такое содержание фтора является предельным и сорбент в этом случае требует немедленной замены, так как дальнейшая его эксплуатация чревата вторичным загрязнением очищенного от летучих галогенидов газа вредными химическими веществами, в частности формальдегидом.

Пример

Газовую смесь, содержащую до 9 об.% HF в воздухе, пропустили через четыре последовательных слоя сорбента толщиной каждого 20 см, размещенных в вертикальной колонне. После колонны присутствие HF в выходном воздухе не обнаруживали в период всего опыта. Поглотитель отрабатывает ресурс послойно. Степень отработки последовательных слоев представлена в табл.3.

Таблица 3
Степень отработки сорбента в динамических условиях
№ слоя Цвет слоя Содержание фтора, % (мас.) Степень отработки, %
Исходный Светло-коричневый 0 -
1 слой Черный 42,4 ~100
2 слой Серый с черными частицами 31,7 86
3 слой Серый 23,1 55
4 слой Светло-коричневый 1,5 ~10

Как следует из данных табл.3, замене подлежат, безусловно, 1-й слой и, вероятно, 2-й слой в связи с практически полным выработанным ресурсом.

Поэтому критериями отработки сорбента являются содержание фтора на уровне 30-32% (мас.) и изменение цвета до серого с черными вкраплениями.

1. Способ диагностирования состояния сорбента на основе мерсеризованной древесины в процессе насыщения его кислыми газообразными соединениями, отличающийся тем, что контролируют изменение цвета сорбента от белого и оттенков коричневого до черного в зависимости от содержания поглощаемого компонента в сорбенте, равного от 0 до 45 мас.%, при степени отработки сорбента от 0 до 100%, при этом древесное волокно является цветовым индикатором, изменяющим цвет при переходе щелочной среды системы в кислую.

2. Способ по п.1, отличающийся тем, что при содержании поглощаемого соединения до 30 мас.% цвет сорбента переходит от оттенков коричневого до равномерного серого при степени отработки 80-85%.

3. Способ по п.1, отличающийся тем, что при содержании поглощаемого соединения в пределах 30-39 мас.% материал состоит из приблизительно равного количества серых и черных частиц, а степень его отработки равна 85-95%.

4. Способ по п.1, отличающийся тем, что при содержании поглощаемого соединения более 40 мас.% цвет сорбента преимущественно черный при степени отработки, приближающейся к 100%.



 

Похожие патенты:

Изобретение относится к лесопользованию и рационализации пользования древесными ресурсами и отходами от переработки древесного сырья в условиях промышленных предприятий и различных типов котельных, работающих на древесном топливе.

Изобретение относится к области диагностики резонансных свойств древесины у молодых деревьев в возрасте подроста и старше и может быть использовано в плантационном лесовыращивании в целях получения качественного материала с предсказуемыми техническими характеристиками для изготовления музыкальных инструментов.
Изобретение относится к методам определения ресурсов лекарственного сырья, в частности к определению ресурсов корневищ и корней элеутерококка колючего в воздушно-сухом состоянии.

Изобретение относится к профилактике лесных пожаров и пожаров на складах древесины и древесных материалов. .

Изобретение относится к области изучения закономерностей перемещения пасоки на различной глубине ствола древесных растений. .

Изобретение относится к лесопользованию и рационализации пользования древесными ресурсами и отходами от переработки древесного сырья в условиях промышленных предприятий и различных типов котельных, работающих на древесном топливе, а также к профилактике лесных пожаров и пожаров на складах древесины и древесных материалов.

Изобретение относится к способам определения лигнина в целлюлозных полуфабрикатах. .

Изобретение относится к определению качества пробы травяных растений и может быть использовано в экологическом мониторинге лесных и нелесных территорий с травяным покровом.

Изобретение относится к способу измерения объема круглых лесоматериалов, использующемуся при заготовке и обработке лесоматериалов. .

Изобретение относится к способам испытания заготовленной древесины в виде специальных сортиментов, в частности резонансных кряжей из еловой древесины. .

Изобретение относится к деревообрабатывающей промышленности и может быть использовано при анализе токсичности клееных древесных материалов

Изобретение относится к экологическому и технологическому мониторингу ландшафтов вдоль трасс продуктопроводов различных типов, в частности нефте- и газопроводов, а также линий электропередачи и связи, с травяной и древесной растительностью, растущей в промежутках времени между расчистками трассы

Изобретение относится к технике выявления и измерения морфологической неоднородности (структура) древесины внутри отдельных годичных колец

Изобретение относится к деревообрабатывающей промышленности, в частности к производству плоских пластинчатых материалов, таких как пиломатериалы и строганый шпон, получаемых путем продольного раскроя круглых лесоматериалов

Изобретение относится к лесной промышленности и может быть использовано для анализа кроны учетной ели по испытаниям хвоинок годичных веточек

Изобретение относится к производству древесных композиционных материалов (ДКМ) и может быть использовано при определении их химической безопасности

Изобретение относится к экологии и может быть использовано для измерения ветвей кроны дерева ели. Для этого проводят описание свойств выбранного учетного дерева и места его произрастания. Наносят на ствол отметки о южной стороне ели. Устанавливают местоположение шейки корня. Измеряют от шейки корня до верхушки терминального побега по мутовкам ветвей кроны. При этом расстояние между мутовками измеряют сверху вниз, принимая за начало верхнюю точку терминального побега ели. По измеренным расстояниям выявляют рост в высоту учетного дерева ели по биологическому возрасту, а также прирост в высоту учетного дерева ели. Дополнительно к измеренным параметрам ствола дерева ели измеряют терминальный побег в конце первого года ретроспективного возраста. Для экологического анализа выбирают по одной ветви из мутовки с южной стороны дерева. При этом высоты расположения оснований южных ветвей со всех мутовок учитываются сверху вниз от терминального побега до шейки корня и снизу вверх от корневой шейки до макушки терминального побега. Прирост ствола ели измеряют по серединам оснований учетных южных ветвей. Для анализа бокового развития и роста учетных южных ветвей измеряют радиус ветви перпендикулярно от вертикальной оси ствола до крайней веточки, параллельно вертикальной оси ствола ели измеряют высоту ветви от середины основания стебля ветви до крайней веточки в конце ветви, а между продольными осями ствола и ветви измеряют угол примыкания ветви к стволу дерева ели. Изобретение обеспечивает повышение комплексности анализа древесных стволов с кронами. 1 з.п. ф-лы, 10 ил., 1 табл., 1 пр.

Изобретение относится к экологии и может быть использовано для измерения комля древесного растения. Для этого проводят выбор пробной площади, отбор дерева на пробной площади, описание свойств выбранного дерева и места его произрастания. Устанавливают местоположение шейки корня, измеряют диаметр ствола от шейки корня на стандартной высоте 1,3 м. При этом, отбор выполняют по всем видам и размерам древесных растений, измерения диаметра ствола каждого древесного растения выполняют без его разрушения. За комель древесного растения принимают участок ствола от корневой шейки до расчетной высоты с учетом доверительного интервала, границы которого вычисляются по формулам: h D min = 1 ,3(1 − exp( − 0 ,064732D 1 ,12520 )) ; h D max = 1 ,4(1 − exp( − 0 ,35284D 0 ,72414 )) где D - диаметр ствола древесного растения на измеряемой высоте, см, h D min - нижняя граница минимальных значений измеряемой от корневой шейки высоты, м, h D max - верхняя граница минимальных значении измеряемой от корневой шейки высоты, м. Изобретение обеспечивает повышение точности анализа ствола в комлевой части у любых типоразмеров древесных растений, произрастающих на пробной площади. 1 з.п. ф-лы, 5 ил., 6 табл., 1 пр.

Группа изобретений касается способа измерения содержания влаги в биологическом материале. Для этого предоставляют справочную базу данных для множества различных типов материалов с известным содержанием влаги. Затем образец биологического материала, такого как древесная стружка (тонкие кусочки), сканируют с использованием электромагнитного излучения по меньшей мере на двух различных энергетических уровнях рентгеновского излучения. Определяют величину излучения, пропущенного через образец биологического материала, на указанных двух энергетических уровнях. Идентифицируют тип материала в указанной справочной базе данных, наиболее схожий с биологическим материалом образца. Определяют содержание влаги в указанном образце биологического материала. Также предложено устройство для измерения содержания влаги в биологическом материале. Группа изобретений обеспечивает оценку содержания влаги в биологическом материале в автоматизированной процедуре. 2 н. и 12 з.п. ф-лы, 2 ил.
Наверх