Установка для кристаллизации адипиновой кислоты

Изобретение относится к установке для кристаллизации адипиновой кислоты, содержащей резервуар для кристаллизации, снабженный средствами для перемешивания, средствами для охлаждения и/или концентрирования раствора адипиновой кислоты, где по меньшей мере часть стенок резервуара для кристаллизации и/или средств для охлаждения и/или концентрирования, находящихся в контакте с раствором адипиновой кислоты, выполнена из материала, выбранного из аустенитных нержавеющих сталей типа AISI 310L в соответствии с номенклатурой AISI (USA) или XlCrNi25-21 (1.4335) в соответствии с европейской номенклатурой. Изобретение позволяет ограничить эффект «облицовки» и предотвратить ухудшение состояния поверхности установки. 6 з.п. ф-лы, 2 табл.

 

Изобретение относится к установке для кристаллизации адипиновой кислоты.

Адипиновая кислота является важным химическим соединением, применяемым в качестве сырья для синтеза многих соединений. Так, адипиновая кислота является важным промежуточным соединением для синтеза полиамидов и более конкретно РА 6.6., а также для производства полиэфиров, полиуретанов. Адипиновую кислоту также используют в качестве добавки при ряде других применений, например при получении пластификаторов.

Адипиновую кислоту синтезируют, главным образом, из циклогексана путем окисления последнего в смеси циклогексанон/циклогексанол с последующим окислением азотной кислотой этой смеси до адипиновой кислоты.

Несколько способов окисления циклогексана до циклогексанон/циклогексанола осуществляют с разными катализаторами.

Азотное окисление смеси циклогексанол/циклогексанон осуществляют в присутствии металлического катализатора, при этом адипиновую кислоту извлекают и очищают главным образом последовательными кристаллизациями.

Предлагались также способы прямого окисления циклогексана до адипиновой кислоты кислородом или воздухом в присутствии металлических катализаторов и растворителя, такого как уксусная кислота. В этих способах адипиновую кислоту извлекали, главным образом, в форме водного раствора.

Независимо от способа синтеза адипиновой кислоты для получения соединения, пригодного для указанных выше применений, необходимо подвергать его очистке. Применяемые главным образом способы очистки содержат стадии кристаллизации, обычно заключающиеся в концентрировании и/или охлаждении раствора адипиновой кислоты для получения кристаллов чистой адипиновой кислоты.

Эти кристаллизации осуществляют главным образом в кристаллизаторах больших размеров. Установка для кристаллизации может содержать несколько кристаллизаторов, соединенных последовательно, или устройство, имеющее несколько отделений, позволяющих проводить очистку непрерывно, или несколько кристаллизаторов, функционирующих в соответствии с периодическим способом.

Кристаллизаторы снабжены главным образом средствами для перемешивания, средствами для охлаждения и/или концентрирования раствора. Эти последние средства могут состоять из устройств, приводимых в контакт с раствором, и в которых циркулирует текучий теплоноситель, при этом средства позволяют выпаривать раствор, в частности путем оказания умеренного давления.

Средства для охлаждения и/или концентрирования раствора могут состоять из нескольких устройств, используемых индивидуально или в комбинации, таких, например, как двойная оболочка в стенке кристаллизатора, элементы, содержащие средства для обеспечения циркуляции текучего теплоносителя, находящиеся в растворе, или внешний контур циркуляции раствора, включающий в себя теплообменник. Этот список средств для охлаждения и/или концентрирования раствора приведен только для сведения и не имеет ограничительного характера.

Для правильного функционирования кристаллизатора и поддержания его производительности необходимо контролировать некоторые рабочие параметры и, более конкретно, параметры, влияющие на загрязнение кристаллизатора путем отложений кристаллизованной адипиновой кислоты на стенках установки. Этот феномен, называемый «облицовка», зависит от природы материала и от состояния поверхности стенок. Более конкретно, его появлению способствует разница температур между раствором и стенками, находящимися в контакте с раствором. Действительно, если эта разница температур больше критической величины, зависящей от концентрации и от температуры раствора, от скорости циркуляции раствора в кристаллизаторе, от природы материала и от состояния поверхности стенки, происходит отложение адипиновой кислоты, прикрепляющееся к стенке.

Отложение адипиновой кислоты наблюдается также независимо от разницы температур на стенках с плохим состоянием поверхности, в частности, в случае кристаллизации путем концентрирования раствора посредством создания умеренного давления в кристаллизаторе.

Для определения условий, приемлемых для функционирования кристаллизатора, необходимо периодически останавливать способ для устранения отложений адипиновой кислоты на стенках теплообменника или на стенках кристаллизатора.

Кроме того, внезапное отслоение отложения в процессе производства адипиновой кислоты может повлечь за собой механические повреждения, даже вызвать изменения качества адипиновой кислоты.

Для ограничения этого феномена облицовки внутренние стенки кристаллизатора, а также стенки устройства для охлаждения и/или концентрирования раствора шлифуют до получения минимально шероховатой поверхности. Эти шлифованные поверхности можно также очищать и мыть при помощи традиционных технологий очистки, используемых в области обработки металлических поверхностей.

Однако состояние поверхности стенок может быстро ухудшаться под действием химической коррозии, в частности, когда кристаллизация адипиновой кислоты происходит из растворов, полученных азотным окислением смесей циклогексанон/циклогексанол. Действительно, эти растворы являются кислыми и содержат значительное количество азотной кислоты и/или ионов нитратов.

Для ограничения феномена облицовки и, возможно, ухудшения состояния поверхности кристаллизаторы и стенки теплообменников часто выполняют из аустенитной нержавеющей стали типа AISI 304L. Тем не менее, эти явления облицовки и коррозии все же происходят. Использование материала этого типа не позволяет устранить или сократить остановки установки для устранения облицовки.

Таким образом, в настоящее время существует потребность в материалах или устройствах, позволяющих сохранять правильное состояние поверхности и ограничивать воздействие коррозии для уменьшения или устранения феномена облицовки.

Для решения этой проблемы настоящим изобретением предлагается использовать для производства стенок, находящихся в контакте с раствором адипиновой кислоты, материал, выбранный из особых сортов нержавеющей стали.

С этой целью изобретением предлагается установка или кристаллизатор для кристаллизации адипиновой кислоты, содержащий резервуар или кристаллизатор, средства для перемешивания и средства для охлаждения и/или концентрирования раствора адипиновой кислоты, отличающиеся тем, что по меньшей мере часть стенок, находящихся в контакте с раствором адипиновой кислоты и являющихся частью резервуара или кристаллизатора и/или средств для концентрирования и/или охлаждения раствора, выполнена из аустенитной нержавеющей стали типа AISI 310L в соответствии с номенклатурой AISI (USA).

Аустенитную нержавеющую сталь типа AISI 310L обозначают также XlCrNi25-21 (1.4335) в соответствии с европейской номенклатурой.

В соответствии с одной характеристикой изобретения средства для охлаждения и/или концентрирования раствора адипиновой кислоты состоят из устройств, находящихся в контакте с раствором. Более конкретно, устройства, в которых циркулирует текучий теплоноситель, можно преимущественно использовать для охлаждения раствора. По изобретению стенки этих устройств для охлаждения, находящихся в контакте с раствором адипиновой кислоты, выполнены из аустенитной нержавеющей стали типа AISI 310L. В другом варианте осуществления способа кристаллизации адипиновой кислоты с концентрированием раствора выпариванием путем создания умеренного давления в установке части установки, такие как внутренние стенки кристаллизатора, например, выполняют из аустенитной нержавеющей стали типа AISI 310L.

В соответствии с другим признаком изобретения поверхности или стенки, выполненные из аустенитной нержавеющей стали типа AISI 310L, шлифуют перед их установкой в кристаллизаторе. Эту шлифовку можно осуществлять любым известным средством с применением физических и/или химических способов для уменьшения шероховатости поверхности.

Для сведения и без ограничения, шероховатость поверхности, измеренная методом, определенным в стандартах NF EN ISO 3274 и NF EN ISO 4288, преимущественно составляет меньше 0,3 мкм.

Средства для охлаждения и/или концентрирования раствора адипиновой кислоты могут быть разными, такими как змеевики, пластины с двойной стенкой, где циркулируют текучие среды или тому подобные.

Кристаллизатор по изобретению пригоден, в частности, для кристаллизации адипиновой кислоты из растворов, выходящих со стадии окисления смеси циклогексанон/циклогексанол азотной кислотой.

Примеры, приведенные ниже исключительно для сведения, иллюстрируют изобретение.

Опытные испытания для определения устойчивости к коррозии и изменения состояния поверхности изделий, выполненных из разных сортов нержавеющей стали, проводили в следующем порядке:

Образцы в форме параллелепипеда размером 50×30 мм, поверхность которых была отшлифована до первоначальной шероховатости Ra меньше 0,1 мкм, погружают в среду, полученную окислением азотной кислотой смеси циклогексанон/циклогексанол, содержащую весовую концентрацию адипиновой кислоты 24% и азотную кислоту в количестве порядка 28 мас.%.

Температуру раствора поддерживают 90°С при атмосферном давлении и перемешивают в течение всего периода погружения. Через 400 часов с начала погружения определяют состояние поверхности образцов и потерю толщины. Эти образцы вновь погружают еще на 400 часов в ту же самую среду. Раствор обновляют перед каждым новым погружением.

Тестируемые образцы выполнены из двух сортов нержавеющей стали:

Образец 1: сталь типа AISI 304L

Образец 2: сталь типа AISI 310L

Состав этих сортов стали приведен в таблице I

Таблица I
Состав металла 304L 310L
% масс.
С 0,015 0,017
S 0,002 0,006
Р 0,025 0,019
Si 0,248 0,14
Mn 1,690 0,593
Cr 18,410 24,29
Ni 10,480 21,62
Мо 0,125 0,317
Cu 0,069 0,167
N - -
Fe bal. bal.
(bal. означает количество до 100%)

Полученные результаты приведены в таблице II:

Таблица II
Образец 1 2
Первоначальный шероховатость Ra (мкм) <0,1 <0,1
потеря толщины (мкм/аn) 0 0
400 часов шероховатость Ra (мкм) 0,5 <0,1
потеря толщины (мкм/аn) 90 <5
800 часов шероховатость Ra (мкм) 1,9 0,2
потеря толщины (мкм/аn) 130 <20
1200 часов шероховатость Ra (мкм) 2,8 0,2
потеря толщины (мкм/аn) 130 <5
1600 часов шероховатость Ra (мкм) 4,1 0,3
потеря толщины (мкм/аn) 230 <20
2000 часов шероховатость Ra (мкм) 4,7 0,3
потеря толщины (мкм/аn) 90 <5
2400 часов шероховатость Ra (мкм) 4,7 0,3
потеря толщины (мкм/аn) 140 <5

Приведенные выше результаты показывают, что шероховатость образца 2 по изобретению изменяется очень незначительно с течением времени по сравнению с измеренной шероховатостью при использовании стали типа 304L (образец 1). Эта характеристика иллюстрирует тот факт, что использование стали типа 310L по изобретению позволяет сохранять с течением времени хорошее состояние поверхности в условиях реакции, о которой идет речь, и, следовательно, максимально ограничить феномен облицовки.

К тому же, приведенные выше результаты показывают, что устойчивость к коррозии (потере толщины) стали типа 310L в среде, полученной в результате окисления азотной кислотой смеси циклогексанон/циклогексанол (по изобретению), повысилась.

1. Установка для кристаллизации адипиновой кислоты, содержащая резервуар для кристаллизации, снабженный средствами для перемешивания, средствами для охлаждения и/или концентрирования раствора адипиновой кислоты, отличающаяся тем, что по меньшей мере часть стенок резервуара для кристаллизации и/или средств для охлаждения и/или концентрирования, находящихся в контакте с раствором адипиновой кислоты, выполнена из материала, выбранного из аустенитных нержавеющих сталей типа AISI 310L в соответствии с номенклатурой A1SI (USA) или XlCrNi25-21 (1.4335) в соответствии с европейской номенклатурой.

2. Установка по п.1, отличающаяся тем, что раствор адипиновой кислоты является раствором, полученным окислением смеси циклогексанон/циклогексанол азотной кислотой.

3. Установка по любому из пп.1, 2, отличающаяся тем, что она включает устройства для охлаждения раствора, предусматривающие циркуляцию текучего теплоносителя, причем указанные устройства выполнены из аустенитной нержавеющей стали типа AISI 310L.

4. Установка по любому из пп.1-2, отличающаяся тем, что по меньшей мере внутренняя часть стенок резервуара для кристаллизации выполнена из аустенитной нержавеющей стали типа AISI 310L.

5. Установка по любому из пп.1-2, отличающаяся тем, что концентрирование раствора достигается путем создания умеренного давления в резервуаре для кристаллизации.

6. Установка по п.1, отличающаяся тем, что поверхность стенок устройств по изобретению, выполненных из аустенитной нержавеющей стали типа AISI 310L, является шлифованной.

7. Установка по п.6, отличающаяся тем, что шлифованные поверхности, выполненные из аустенитной нержавеющей стали типа AISI 310L, имеют шероховатость меньше 0,3 мкм, измеренную по методу, определенному в стандартах NF EN ISO 3274 и NF EN ISO 4288.



 

Похожие патенты:

Изобретение относится к улучшенному способу получения раствора соли диаминов и дикислот, полученных смешиванием дикислоты и диамина, с массовой концентрацией соли, находящейся в пределах от 50 до 80%.

Изобретение относится к способу получения адипиновой кислоты окислением капролактама, где в качестве исходного сырья используются капролактамсодержащие отходы производства капролактама - кубы дистилляции производства капролактама окислением циклогексана, с содержанием капролактама не менее 90%, при температуре 75-100°С в жидкой среде, причем реакцию осуществляют с помощью окислителя, представляющего собой смесь 30% перекиси водорода, взятой в количестве H2O2/КЛ (1-1,1)/1 моль/моль, и концентрированной серной кислоты (96%) в количестве 0,2-0,36 моль/кг реакционной массы, в котором оксидат подкисляют концентрированной серной кислотой с целью выделения адипиновой кислоты.

Изобретение относится к комбинированному способу, который объединяет эпоксидирование олефина с получением циклогексанона и циклогексанола, являющихся промежуточными для получения адипиновой кислоты или капролактама - предшественников нейлона.
Изобретение относится к усовершенствованному способу получения адипиновой кислоты, применяемой в различных областях, например, в качестве добавки в различные продукты и при изготовлении бетона, а также в качестве мономера при получении полимеров.
Изобретение относится к усовершенствованному способу получения дикарбоновых кислот, которые находят применение в различных областях, например, в качестве добавки к различным продуктам, при изготовлении бетона, а также в качестве мономеров при получении полимеров.

Изобретение относится к усовершенствованному способу окисления циклоалифатических углеводородов и/или спиртов и кетонов в жидкой среде с помощью окислителя, содержащего молекулярный кислород, до кислот или многоосновных кислот.
Изобретение относится к кристаллам адипиновой кислоты и их обработке для достижения минимальной слеживаемости кристаллов. .
Изобретение относится к усовершенствованному способу получения карбоновых кислот и поликислот окислением в жидкой среде молекулярным кислородом циклогексана в присутствии катализатора, липофильного кислотного органического соединения, имеющего растворимость в воде ниже 10 мас.% при температуре от 100С до 30 0С и образующего с циклогексаном, по меньшей мере, одну гомогенную жидкую фазу, причем соотношение между числом молей липофильной кислоты и числом молей металла, образующего катализатор, составляет в интервале от 7,0 до 1300, а липофильную кислоту выбирают из группы, в которую входят кислоты 2-этилгексановая, декановая, ундекановая, додекановая, стеариновая (октадекановая) и их перметилированные производные, кислоты 2-октадецилянтарная, 2,5-ди-третбутилбензойная, 4-третбутилбензойная, 4-октилбензойная, третбутилгидроофталат, нафтеновые или антраценовые кислоты, замещенные алкильными группами, преимущественно типа третбутила, жирные кислоты, замещенные производные фталевых кислот.
Изобретение относится к усовершенствованному способу окисления циклических углеводородов, спиртов и/или кетонов до карбоновой кислоты с помощью кислорода или кислородсодержащего газа.

Изобретение относится к усовершенствованному способу гетерогенно-катализируемого парциального газофазного окисления пропилена до акриловой кислоты, в соответствии с которым в первой реакционной зоне исходную реакционную газовую смесь 1, содержащую пропилен, молекулярный кислород и по меньшей мере один инертный разбавляющий газ при молярном отношении О2:С3 Н6 1, на первой реакционной стадии при повышенной температуре пропускают по меньшей мере через один первый слой катализатора, активная масса которого содержит по меньшей мере один полиметаллический оксид на основе молибдена, железа и висмута, причем конверсия пропилена при однократном пропускании через первый слой катализатора составляет 90% мол., в то время как суммарная селективность (S AC) образования акролеина и акриловой кислоты в качестве побочного продукта составляет 80% мол., при необходимости снижают температуру полученной на первой реакционной стадии газовой смеси продуктов реакции 1 путем ее прямого охлаждения, косвенного охлаждения или прямого и косвенного охлаждения, при необходимости добавляют к ней вторичный газ в виде молекулярного кислорода или инертного газа, либо молекулярного кислорода и инертного газа, и в виде исходной реакционной газовой смеси 2, содержащей акролеин, молекулярный кислород и по меньшей мере один инертный разбавляющий газ при молярном отношении O 2:C3H4O 0,5 на второй реакционной стадии при повышенной температуре пропускают по меньшей мере через один второй слой катализатора, активная масса которого содержит по меньшей мере один полиметаллический оксид на основе молибдена и ванадия, причем конверсия акролеина при однократном пропускании через второй слой катализатора составляет 90% мол.

Изобретение относится к усовершенствованному способу получения композиции поликарбоновой кислоты, включающему: (а) проведение окисления многофазной реакционной среды, содержащей окисляемое исходное ароматическое соединение, растворитель и воду, в зоне первичного окисления с получением в результате исходной суспензии, содержащей сырую терефталевую кислоту; (b) проведение окислительного сжигания, по меньшей мере, части указанной исходной суспензии в зоне сжигания с получением в результате суспензии продукта сжигания, имеющей одну или более из следующих характеристик: (i) содержит менее чем 9000 частей на млн.

Изобретение относится к усовершенствованному способу получения и очистки изофталевой кислоты, заключающийся в ступенчатом окислении м-замещенных алкилбензолов кислородом воздуха в уксусной кислоте, в присутствии Co-Mn-Br катализатора при повышенной температуре и давлении с последующей очисткой образовавшейся ИФК методом перекристаллизации, в котором чистую ИФК получают окислением м-ксилола (или м-цимола) в две ступени в узких по ступеням (1, 2) пределах параметров: Т, °С - 191-194/194-195, при суммарной концентрации Co и Mn - 800-1200 ppm, соотношении Co:Mn=2,1-3,0:1, концентрация [H2O] в зонах окисления - 3,8-7,0/3,2-6,0% мас., [O2] в отработанном O2-газе 2-4,5% об.
Изобретение относится к способу получения ацетата калия взаимодействием гидроксида калия с водным раствором уксусной кислоты и последующими стадиями обработки полученного ацетата калия.

Изобретение относится к усовершенствованным способам производства ароматических карбоновых кислот, включающим контактирование сырья, содержащего по меньшей мере один исходный замещенный ароматический углеводород, заместители которого способны окисляться до групп карбоновой кислоты, с газообразным кислородом в реакционной смеси жидкофазного окисления, содержащей монокарбоновую кислоту в качестве растворителя и воду, в присутствии каталитической композиции, содержащей по меньшей мере один тяжелый металл, эффективный для катализации окисления замещенного ароматического углеводорода до ароматической карбоновой кислоты, в секции реакции при повышенной температуре и давлении, эффективных для поддержания в жидком состоянии реакционной смеси жидкофазного окисления и образования ароматической карбоновой кислоты и примесей, содержащих побочные продукты окисления исходного ароматического углеводорода, растворенные или суспендированные в реакционной смеси жидкофазного окисления, и паровой фазы высокого давления, содержащей растворитель - монокарбоновую кислоту, воду и небольшие количества исходного ароматического углеводорода и побочных продуктов; перенос паровой фазы высокого давления, отведенной из секции реакции в секцию разделения, орошаемую жидкой флегмой, содержащей воду и способную практически полностью разделить растворитель - монокарбоновую кислоту и воду в паровой фазе высокого давления с образованием жидкости, обогащенной растворителем - монокарбоновой кислотой и обедненной водой, и газа высокого давления, содержащего водяной пар; перенос газа высокого давления, содержащего водяной пар, отведенного из секции разделения, без обработки для удаления органических примесей в секцию конденсации и конденсацию газа высокого давления с образованием жидкого конденсата, содержащего воду, и отходящего газа из секции конденсации под давлением, содержащего неконденсируемые компоненты газа высокого давления, перенесенного в секцию конденсации; выделение из секции конденсации жидкого конденсата, содержащего воду и пригодного для использования без дополнительной обработки в качестве по меньшей мере одной жидкости, содержащей воду, в способе очистки ароматических карбоновых кислот; и подачу жидкого конденсата, содержащего воду, выделенного в секции конденсации, в процесс очистки ароматической карбоновой кислоты, в котором по меньшей мере одна стадия включает: (а) приготовление реакционного раствора очистки, содержащего ароматическую карбоновую кислоту и примеси, растворенные или суспендированные в жидкости, содержащей воду; (b) контактирование реакционного раствора очистки, содержащего ароматическую карбоновую кислоту и примеси в жидкости, содержащей воду, при повышенных температуре и давлении с водородом в присутствии катализатора гидрирования с образованием жидкой реакционной смеси очистки; (с) выделение твердого очищенного продукта, содержащего карбоновую кислоту, из жидкой реакционной смеси очистки, содержащей ароматическую карбоновую кислоту и примеси в жидкости, содержащей воду; и (d) промывку по меньшей мере одной жидкостью, содержащей воду, полученной очищенной твердой ароматической карбоновой кислоты, выделенной из жидкой реакционной смеси очистки, содержащей ароматическую карбоновую кислоту, примеси жидкость, содержащую воду; так что жидкость, содержащая воду, по меньшей мере на одной стадии способа очистки включает жидкий конденсат, содержащий воду и не требующий обработки по удалению органических примесей.

Изобретение относится к усовершенствованному способу сушки ароматической карбоновой кислоты, включающему непрерывную сушку осадка ароматической карбоновой кислоты с помощью сушилки с псевдоожиженным слоем, причем осадок вводят в сушилку при скорости 50 кг/час или выше, и сушильный газ, имеющий температуру 80-160°С, подают в сушилку при приведенной скорости 0,3-1 м/сек, с тем, чтобы содержание жидкости в осадке составило 14% по массе или ниже; а также к усовершенствованному способу получения сухой ароматической карбоновой кислоты, включающему непрерывную сушку осадка ароматической карбоновой кислоты с помощью сушилки с псевдоожиженным слоем с получением готовой ароматической карбоновой кислоты, где осадок вводят в сушилку при скорости 50 кг/час или выше, и сушильный газ, имеющий температуру 80-160°С, подают в сушилку при приведенной скорости 0,3-1 м/сек, с тем, чтобы содержание жидкости в осадке составило 14% по массе или ниже.

Изобретение относится к усовершенствованному способу утилизации энергии при получении ароматических карбоновых кислот жидкофазным окислением ароматических углеводородов, при котором в верхней части реактора образуется пар, содержащий растворитель реакции и воду, способ включает стадии: а) высокоэффективное разделение пара из верхней части реактора с образованием по меньшей мере газового потока высокого давления, содержащего воду и органические примеси; b) утилизацию тепла газового потока высокого давления путем теплообмена с теплопоглотителем, при котором образуется конденсат, содержащий примерно 20-60 мас.% воды, присутствующей в газовом потоке высокого давления, и отходящий газ высокого давления, содержащий примерно 40-80 мас.% воды, присутствующей в газовом потоке высокого давления, остается неконденсированным, и температура или давление теплопоглотителя повышается; и с) расширение отходящего газа высокого давления, неконденсированного на стадии (b), содержащего примерно 40-80 мас.% воды, присутствующей в газовом потоке высокого давления для утилизации энергии отходящего газа высокого давления в виде работы; и d) направление теплопоглотителя, температура и давление которого повышаются на стадии (с), на другую стадию способа для нагревания или использования вне способа.
Изобретение относится к усовершенствованному способу выделения акриловой кислоты из жидкой фазы, содержащей акриловую кислоту в качестве основного компонента и целевого продукта и метакролеин в качестве побочного продукта, в котором в качестве жидкой фазы используют жидкую фазу, получаемую с помощью по крайней мере одного нечеткого разделения из газообразной смеси продуктов парциального окисления в газовой фазе на гетерогенном катализаторе по крайней мере одного трехуглеродного предшественника акриловой кислоты, при этом жидкую фазу подвергают кристаллизации с обогащением акриловой кислоты в образовавшемся кристаллизате и метакролеина в остаточной жидкой фазе.
Наверх