Каскадная солнечная батарея

Авторы патента:


Каскадная солнечная батарея
Каскадная солнечная батарея
Каскадная солнечная батарея
Каскадная солнечная батарея
Каскадная солнечная батарея
Каскадная солнечная батарея
Каскадная солнечная батарея
Каскадная солнечная батарея
H01L31/0687 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

Владельцы патента RU 2606756:

АЦУР СПЭЙС Золяр Пауер ГмбХ (DE)

Изобретение относится к области электротехники, а именно к устройству каскадной солнечной батареи. Каскадная солнечная батарея выполнена с первой полупроводниковой солнечной батареей, причем в первой полупроводниковой солнечной батарее имеется р-n переход из первого материала с первой константой решетки, и со второй полупроводниковой солнечной батареей, причем во второй полупроводниковой солнечной батарее имеется р-n переход из второго материала со второй константой решетки, и причем первая константа решетки меньше, чем вторая константа решетки, и у каскадной солнечной батареи имеется метаморфный буфер, причем метаморфный буфер включает в себя последовательность из первого, нижнего слоя AlInGaAs или AlInGaP, и второго, среднего слоя AlInGaAs или AlInGaP, и третьего, верхнего слоя AlInGaAs или AlInGaP, и метаморфный буфер сформирован между первой полупроводниковой солнечной батареей и второй полупроводниковой солнечной батареей, и константа решетки метаморфного буфера изменяется по толщине (по координате толщины) метаморфного буфера, и причем между по меньшей мере двумя слоями метаморфного буфера константа решетки и содержание индия увеличивается, а содержание алюминия уменьшается. Снижение остаточного напряжения в солнечной батарее, а также повышение коэффициента ее полезного действия является техническим результатом изобретения. 14 з.п. ф-лы, 7 ил.

 

Настоящее изобретение касается панелей (установок) солнечных батарей, в частности каскадной солнечной батареи.

При эпитаксии III-V тандемных (многопереходных) солнечных батарей применяют так называемые метаморфные буферы, чтобы с высоким качеством осадить на метамормных буферах слои полупроводника из материалов с другими константами решетки, нежели у подложки, либо же из слоев, расположенных ниже буфера. Посредством метаморфного буфера формируют так называемую виртуальную подложку с константной решетки, отличной от константы решетки исходной подложки. Благодаря этому можно расширить возможности для выбора материалов, например, для различных элементов многопереходной солнечной батареи, а также повысить коэффициент полезного действия многопереходной солнечной батареи.

Желательно, чтобы константа решетки метаморфного буфера в процессе изготовления в общем случае увеличивалась. Из-за этого большинство слоев буфера находятся под напряжением сжатия, причем по сравнению с буфером, находящимся под напряжением растяжения, сдвиги формируются более однородно, в частности, возникает меньше трещин. Кроме того, желательно, чтобы все слои метаморфного буфера были прозрачны для света с определенной длиной волны, так чтобы свет можно было использовать для фотоэлектрического преобразования энергии в дальнейших солнечных батареях.

Из публикации A. Zakaria, Richard R. King, M. Jackson, and M. S. Goorsky; Comparison of arsenide and phosphide based graded buffer layers used in inverted metamorphic solar cells; J. Appl. Phys. 112, 024907 (2012) известны несколько каскадных солнечных батарей в каждом случае с одним метаморфным буфером. Кроме того, из патента США US 2013/0312818 A1 известна каскадная солнечная батарея, как показано на представленной фиг. 4. Метаморфные каскадные солнечные батареи раскрыты также в публикации W. Guter, J. Schцne, S.P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Olivia, A. Bett и F. Dimroth; Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight; Applied Physics Letters 94, 223504, 2009.

Другие каскадные солнечные батареи с метаморфными буферами раскрыты в публикации J. Schцne, „Kontrolle von Spannungsrelaxation und Defektbildung in metamorphen III-V Halbleiterheterostrukturen fur hocheffiziente Halbleiter-Solarzellen ("Контроль релаксации напряжения и формирования дефектов в метаморфных III-V полупроводниковых гетероструктурах для высокоэффективных полупроводниковых солнечных батарей"), диссертация 2009 г., Технический факультет, Киль.

Также в случае метаморфных буферов желательно, чтобы напряжение в решетке снималось путем формирования сдвигов и других дефектов кристаллов уже в буферах, причем дефекты кристаллов по возможности локализовывались бы в буфере. В частности, следует воспрепятствовать тому, чтобы прорастающие дислокации проникали в другие части стопки слоев полупроводника. Для этих целей предпочтительно сделать так, чтобы в метаморфных буферах твердость буферных слоев возрастала с константой решетки, чтобы, в частности, снизить распространение смещений в расположенные выше слои и/или затруднить релаксацию расположенных выше слоев. В отличие от этого, публикация V. Klinger, T. Roesener, G. Lorenz, M. Petzold und F. Dimroth; Elastische und plastische Eigenschaften von III-V Halbleitern fur metamorphe Pufferstrukturen ("Эластические и пластические свойства III-V полупроводников для метаморфных буферных структур"), 27-я конференция DGKK, эпитаксия полупроводников III/V; Эрланген, 6-7 декабря 2012 г., сообщает, что для метаморфного буфера, соответствующего фигуре 5 настоящей заявки из трехкомпонентного соединения Al0,4InxGa0,6-x (0<х<0.6), в котором элемент Галлий последовательно заменяют индием, константа решетки возрастает с содержанием индия, в то время как нанотвердость снижается, что изображено в виде сплошной линии на представленной фигуре 2.

На этом фоне задача изобретения состоит в том, чтобы представить устройство, улучшающее нынешний уровень техники.

Задачу решают посредством каскадной солнечной батареи, обладающей признаками, описанными в пункте 1 формулы изобретения. Предпочтительные варианты исполнения изобретения представляют собой предмет зависимых пунктов.

В соответствии с объектом изобретения представлена каскадная солнечная батарея с первой полупроводниковой солнечной батареей, причем в первой полупроводниковой солнечной батарее имеется р-n переход из первого материала с первой константой решетки, и со второй полупроводниковой солнечной батареей, причем во второй полупроводниковой солнечной батарее имеется р-n переход из второго материала со второй константой решетки, и причем первая константа решетки меньше, чем вторая константа решетки, и у каскадной солнечной батареи имеется метаморфный буфер, причем метаморфный буфер включает в себя последовательность из первого, нижнего слоя AlInGaAs или AlInGaP, и второго, среднего слоя AlInGaAs или AlInGaP, и третьего, верхнего слоя AlInGaAs или AlInGaP, и метаморфный буфер сформирован между первой полупроводниковой солнечной батареей и второй полупроводниковой солнечной батареей, причем константа решетки метаморфного буфера изменяется по толщине, то есть вдоль последовательности слоев метаморфного буфера, и причем между по меньшей мере двумя слоями метаморфного буфера константа решетки и содержание индия увеличивается, а содержание алюминия снижается. Подразумевается, что три слоя непосредственно следуют друг за другом, или что как между первым слоем и вторым слоем, так и/или между вторым слоем и третьим слоем образованы и другие слои.

Следует отметить, что количество слоев метаморфного буфера составляет по меньшей мере три, однако, в зависимости от варианта применения можно изготавливать и слои в количестве шесть или вплоть до тридцати или более отдельных слоев. Кроме того, следует отметить, что отдельные слои метаморфного буфера выполнены в общем случае тонкими, предпочтительно менее 600 нм, а наиболее предпочтительно - менее 300 нм. Кроме того, данные о константе решетки некоторого материала всегда относятся к ненапряженному состоянию. В частности, в месте соединения двух слоев константы решетки обоих лежащих друг на друге слоев по горизонтали (in-plane) приблизительно одинаковы, в то время как вертикальные (out-of-plane) константы решетки и константа решетки в случае отсутствия напряжения различаются.

Преимущество устройства согласно изобретению состоит в том, что благодаря высокому содержанию алюминия в первом, нижнем слое метаморфного буфера, несмотря на еще более увеличивающуюся константу решетки по сравнению с подлежащим слоем и по сравнению со слоем, лежащим выше, в пределах буфера формируется особо мягкий слой, то есть слой с меньшей нанотвердостью. В дальнейшем термином "нанотвердость" обозначают твердость данного конкретного слоя буфера. Следует отметить, что в пределах отдельного слоя нанотвердость рассматривают в первом приближении как величину однородную и постоянную. Кроме того, необходимо отметить, что термином "нижний первый слой" обозначают тот слой, который сформирован ближе всего к первой полупроводниковой солнечной батарее. Формирование первого слоя облегчает формирование дислокаций сдвига в первом нижнем слое. Исследования показали что сдвиги предпочтительно формируются в первом слое и остаются в первом слое, а не проникают в активные слои полупроводниковых солнечных батарей, расположенные ниже и/или выше. Благодаря этому удается воспрепятствовать нежелательному уменьшению длины диффузии носителей зарядов в активных слоях и уменьшению коэффициента полезного действия полупроводниковых солнечных батарей в каскадной солнечной батарее. Иными словами, формирование первого слоя с максимальным содержанием алюминия по сравнению с другими слоями метаморфного буфера, а также по сравнению с другими слоями, находящимися непосредственно в соединении с материальным замыканием с метаморфным буфером, в первый слой вводят своего рода "намеченный участок разрушения", поскольку первый слой выполнен особо мягким по сравнению с окружающими слоями.

Если жесткость полупроводниковых слоев в метаморфном буфере согласно изобретению возрастает с константой решетки, то многократно подавляется релаксация слоев с большей константой решетки и большей твердостью, прежде чем практически полностью не пройдет релаксация слоев с меньшей константой решетки и меньшей жесткостью. Подразумевается, что в каждом случае самый мягкий слой, не релаксировавший полностью, формирует "намеченный участок разрушения".

Еще одно преимущество состоит в том, что введение первого слоя уменьшает изгиб полупроводниковой подложки под воздействием стрессовом сжатии или растяжении. В частности, при нарастании других слоев в процессе эпитаксии удается добиться лучшей однородности и лучшей воспроизводимости роста слоев, и все слои каскадной солнечной батареи можно изготавливать по месту (in situ). Благодаря этому можно просто и недорого, а также с высоким коэффициентом полезного действия выращивать друг на друге полупроводниковые солнечные батареи с сильно отличающимися константами решетки либо же, соответственно, межзонным интервалом, который в дальнейшем также называют энергетическим зазором, в рамках одного процесса эпитаксии. "Намеченный участок разрушения" в пределах метаморфного буфера надежным образом облегчает формирование дефектов или сдвигов, что способствует релаксации стопки слоев полупроводника, причем в силу профиля градиента твердости одновременно подавляется распространение дефектов и сдвигов на участки за пределами метаморфного буфера.

Другое преимущество состоит в том, что каскадная солнечная батарея согласно объекту изобретения после ее изготовления обладает меньшим остаточным напряжением. В результате повышаются безопасность работы и коэффициенты полезного действия каскадной солнечной батареи.

Еще одно преимущество состоит в том, что множество полупроводниковых солнечных батарей с различными константами решетки и энергетическими зазорами можно просто собирать в каскадную солнечную батарею так, чтобы общий коэффициент полезного действия каскадной солнечной батареи повышался.

В усовершенствованном варианте в последовательности трех слоев метаморфного буфера содержание индия и константа решетки в каждом случае от одного слоя к следующему слою возрастает, а содержание алюминия падает. Особо предпочтительно, если между по меньшей мере двумя слоями метаморфного буфера содержание индия возрастает по меньшей мере на 1%, а содержание алюминия по меньшей мере на 1% снижается.

В усовершенствованном варианте у первого слоя метаморфного буфера константа решетки больше, чем у первой полупроводниковой солнечной батареи. В предпочтительном усовершенствованном варианте содержание алюминия в первом слое больше или по меньшей мере такое же, как и содержание алюминия всех других слоев метаморфного буфера. Исследования показали, что сдвиги формируются предпочтительно в первом самом мягком слое метаморфного буфера.

В предпочтительной форме исполнения константа решетки метаморфного буфера в направлении второй полупроводниковой солнечной батареи предпочтительно возрастает от слоя к слою в каждом случае по меньшей мере на 0,003 Ǻ, а наиболее предпочтительно, в каждом случае, по меньшей мере на 0,005 Ǻ.

В усовершенствованном варианте слой метаморфного буфера обладает третьей константой решетки. Третья константа решетки больше, чем константа второй полупроводниковой солнечной батареи. Исследования показали, что благодаря этому можно дополнительно улучшить релаксацию метаморфного буфера.

В предпочтительной форме исполнения у метаморфного буфера имеется четвертый слой, расположенный над третьим слоем и соединенный с ним с материальным замыканием. Константа решетки четвертого слоя меньше, чем константа решетки третьего слоя. В подробных исследованиях удалось показать, что искривление подложки из-за метаморфного роста можно дополнительно оптимизировать, выбрав подходящую константу решетки и толщину четвертого слоя.

В одной предпочтительной форме исполнения в пределах последовательности слоев метаморфного буфера сформированы только слои AlInGaAs или только слои AlInGaP.

В усовершенствованном варианте в случае последовательности четырех слоев у первого слоя константа решетки и нанотвердость меньше, чем у второго слоя, а у третьего слоя константа решетки и нанотвердость выше, чем у второго слоя. Кроме того, предусмотрен четвертый слой, и у него меньше константа решетки и меньше нанотвердость, чем у третьего слоя. Из-за этого релаксация рассогласования решеток подлежащих слоев улучшается благодаря формированию дальнейших дислокаций сдвига. В предпочтительной форме исполнения у последовательности трех слоев первый слой соединен со вторым слоем, а второй слой - с третьим слоем, с материальным замыканием.

В другой форме исполнения предусмотрена третья полупроводниковая солнечная батарея, причем между второй полупроводниковой солнечной батареей и третьей полупроводниковой солнечной батареей сформирован еще один метаморфный буфер. Иными словами, во всей каскадной солнечной батарее сформированы два метаморфных буфера, отделенных друг от друга в пространстве по меньшей мере одной солнечной батареей. В другой форме исполнения между двумя полупроводниковыми солнечными батареями сформирована последовательность двух метаморфных буферов. Кроме того, предпочтительно, чтобы в каждой полупроводниковой солнечной батарее содержался P/N переход. Также следует отметить, что слои метаморфного буфера не являются частью pn-перехода туннельного диода.

Ниже дано подробное описание изобретения с опорой на чертежи. При этом подобные элементы обозначены одинаково. Представленные формы исполнения очень схематичны, то есть расстояния, а также значения протяженности по горизонтали и по вертикали представлены без соблюдения масштаба и не находятся друг с другом (если не указано иное) в геометрических соотношениях, которые можно из чего-то вывести.

Представлены:

Фигура 1 первая форма исполнения согласно изобретению каскадной солнечной батареи с метаморфным буфером,

Фигура 2 нанотвердость в зависимости от константы решетки для различных стехиометрических соотношений.

Фигура 3а другое изображение формы исполнения каскадной солнечной батареи с фигуры 1 с метаморфным буфером,

Фигура 3b изображение другой формы исполнения каскадной солнечной батареи с фигуры 1 с метаморфным буфером,

Фигура 3с еще одна форма исполнения согласно изобретению с двумя метаморфными буферами,

Фигура 4 изображение метаморфных буферов согласно нынешнему уровню техники,

Фигура 5 изображение метаморфных буферов согласно нынешнему уровню техники.

Иллюстрация на фигуре 1 демонстрирует схематическое изображение первой формы исполнения, включающее в себя каскадную солнечную батарею 10 с полупроводниковой солнечной батареей IGP, причем у полупроводниковой солнечной батареи IGP имеется р-n переход из материала с константой решетки, и с первой полупроводниковой солнечной батареей GA, причем в первой полупроводниковой солнечной батарее GA имеется р-n переход из первого материала с первой константой решетки, и со второй полупроводниковой солнечной батареей IGA, причем во второй полупроводниковой солнечной батарее IGA имеется р-n переход из второго материала со второй константой решетки, и причем первая константа решетки соответствует второй константе решетки (подгонка по решетке), а третья константа решетки больше, чем вторая константа решетки. Между второй полупроводниковой солнечной батареей GA и третьей полупроводниковой солнечной батареей IGA каскадной солнечной батареи 10 сформирован метаморфный буфер 40, чтобы опосредовать различные константы решетки двух полупроводниковых солнечных батарей GA и IGA. Падение света L на каскадную солнечную батарею 10 происходит через полупроводниковую солнечную батарею IGP. Подразумевается, что обозначения отдельных солнечных батарей GA, IGA, IGP указывают на предпочтительно применяемые химические вещества, то есть GA означает арсенид галлия, IGA - индий и арсенид галлия, а IGP фосфид индия и галлия.

При изображении отдельных слоев метаморфного буфера 40 представленная ширина данного конкретного слоя является мерой константы по горизонтали (in-plane) решетки а данного конкретного слоя. У отдельных слоев константа решетки а представлена отчасти как постоянная, а также как возрастающая или как уменьшающаяся по толщине слоя. Подразумевается, что на границе раздела между двумя слоями обе константы по горизонтали (in-plane) решетки а (также обозначаемые как латеральные константы решетки а) встречающихся друг с другом слоев приблизительно равны.

В настоящем случае метаморфный буфер 40 состоит в общей сложности из шести отдельных слоев. На первой солнечной батарее GA сформирован первый метаморфный слой MP1 метаморфного буфера 40 с несколько большей константой решетки, чем константа решетки первой солнечной батареи GA. Далее сформирован располагаемый на первом слое MP1 второй метаморфный слой МР2 с несколько большей константой решетки, чем константа решетки первого метаморфного слоя MP1. Далее сформирован располагаемый на втором слое МР2 третий метаморфный слой МР3 с несколько большей константой решетки, чем константа решетки второго метаморфного слоя МР2. Далее сформирован располагаемый на третьем слое МР3 четвертый метаморфный слой МР4 с несколько большей константой решетки, чем константа решетки третьего метаморфного слоя МР3. Далее сформирован располагаемый на четвертом слое МР4 пятый метаморфный слой МР5 с несколько большей константой решетки, чем константа решетки четвертого метаморфного слоя МР4. Далее сформирован располагаемый на пятом слое МР5 шестой метаморфный слой МР6 с несколько меньшей константой решетки, чем константа решетки пятого метаморфного слоя МР5. Затем сформирована располагаемая на шестом слое МР6 вторая солнечная батарея IGA.

Для пояснения формы исполнения согласно изобретерию параллельно каскадной солнечной батарее на первой диаграмме D1 и на второй диаграмме D2 приведены выбранные физические параметры для участка метаморфного буфера между первой полупроводниковой солнечной батареей GA и второй полупроводниковой солнечной батареей IGA. На первой диаграмме D1 по оси x отложены значения константы решетки а (штриховая линия) и значения энергетического зазора Eg (пунктирная линия), а вдоль оси у представлена последовательность отдельных слоев буфера 40. На второй диаграмме D2 по оси x представлены значения содержания индия (штрихами) и содержания алюминия (пунктиром) (In)GaP либо же, соответственно (Al)InGaAs, в то время как вдоль оси у опять же представлена последовательность отдельных слоев буфера 40. На диаграмме D2 в каждом случае изменения содержания индия и алюминия обозначены только химическим символом In и Al. В дальнейшем из соображений обзорности приводятся только полные наименования соответствующих химических элементов.

На первой диаграмме D1 видно, что константа решетки а возрастает, начиная с первой полупроводниковой солнечной батареи GA и до пятого метаморфного слоя МР5, а в шестом метаморфном слое МР6 снижается, чтобы в следующей второй солнечной батарее IGA оставаться неизменной. Из соображений обзорности изменения константы решетки а в ненапряженном состоянии показаны ступенчатыми. Следует, однако, отметить, что константа решетки по горизонтали в тонких (в общем случае) слоях буфера изменяется приблизительно непрерывно (плавно). В настоящем документе тонкими слоями называют слои толщиной менее 600 нм. В отличие от профиля константы решетки а энергетический зазор Eg при переходе от второй солнечной батареи к первому метаморфному слою MPI увеличивается скачкообразно. При прохождении от первого метаморфного слоя MPI до пятого метаморфного слоя МР5 включительно энергетический зазор Eg ступенчато уменьшается. От пятого метаморфного слоя МР5 к шестому метаморфному слою МР6 энергетический зазор Eg снова увеличивается, чтобы наконец при переходе от шестого метаморфного слоя МР6 ко второй солнечной батарее IGA упасть ниже уровня первой солнечной батареи GA.

На второй диаграмме D2 видно, что содержание алюминия в первом метаморфном слое MPI максимально по сравнению с последующими слоями МР2-МР6. Начиная с первого слоя MPI содержание алюминия в последующих слоях МР2-МР6 ступенчато снижается, причем в слое МР6 содержание алюминия самое минимальное.

В противоположность траектории изменений содержания алюминия содержание индия от первого метаморфного слоя MPI до пятого метаморфного слоя МР5 включительно ступенчато возрастает. Затем, начиная с пятого метаморфного слоя МР5 к шестому метаморфному слою МР6 содержание индия снова падает. Иными словами, содержание индия в пятом метаморфном слое МР5 самое максимальное в метаморфном буфере. Здесь также необходимо отметить, что из соображений обзорности отдельные композиции в каждом конкретном слое изображены однородными. Подразумевается, однако, что по меньшей мере на поверхностях раздела между двумя слоями, лежащими друг на друге, состав (композиция) может изменяться практически непрерывным образом.

На иллюстрации фигуры 2 изображена зависимость нанотвердости NH от константы решетки а для различных композиций полупроводниковых соединений AlyInxGal-x-yAs. В дальнейшем из соображений обзорности приводится только обозначение композиции полупроводниковых соединений по химической формуле.

Сплошной линией показана известная траектория, которая уже упоминалась в начале описания. Далее исследования (результаты которых изображены штриховой линией) показали, что, начиная от двухкомпонентного соединения AlAs, через трехкомпонентное соединение Al1-xInxAs к бинарному соединению InAs, то есть при последовательной замене алюминия на индий, константа решетки а возрастает, начиная от двухкомпонентного AlAs, в то время как нанотвердость NH падает до минимума, пока содержание индия не достигнет приблизительно 0.6, а затем с продолжением роста содержания индия нанотвердость NH снова возрастает, причем в конечном итоге элемент In (индий) полностью заменяет элемент Al (алюминий). Недостаток такой траектории - это то, что нанотвердость NH возрастает лишь при очень больших константах решетки а и при очень высоких значениях содержания индия, выше 0.6. Если в данном случае константа решетки третьей солнечной батареи IGA меньше, чем таковая Al0.4In0.6As, то добиться того, чтобы твердость возрастала с константой решетки, не удается.

Другие исследования, результаты которых изображены штрихпунктирной линией, показали, что благодаря комбинации элементов алюминия, индия и галлия согласно изобретению, в частности, для четырехкомпонентного соединения AlyInxGal-x-yAs уже при малых значениях содержания индия можно добиться роста нанотвердости NH с константой решетки а. В связи с этим, в частности, начиная с AlyGal-yAs или AlyInxGal-x-yAs, посредством замены алюминия индием нанотвердость сначала снижают, после чего благодаря надлежащей замене алюминия индием и галлием нанотвердость NH снова возрастает при значительно меньших константах решетки а, чем в случае штрихового графика. Другими словами, роста нанотвердости NH с константой решетки а в этом случае удается добиться при содержании индия значительно ниже 0.6, то есть при малых константах решетки.

Выгодно, что практически в любом месте в пределах метаморфного буфера можно ввести отдельные слои с более высокой нанотвердостью NH, чем у подлежащих слоев, при малых константах решетки а, чтобы в силу этого повлиять на распространение сдвигов и релаксации. При этом предпочтительно, чтобы релаксация имела место в мягком слое. Необходимость в формировании дополнительных так называемых блокирующих слоев вне метаморфного буфера отпадает.

На иллюстрации, представленной на фигуре 3а, еще раз изображена каскадная солнечная батарея с последовательностью слоев, соответствующей фигуре 1. Ниже поясняются только отличия от формы исполнения на фигуре 1. На диаграмме D1 представлен график нанотвердости NH для первых пяти слоев MP1-МР5. Согласно этому графику нанотвердость NH первого слоя MP1 является максимальной и ступенчато снижается, пока не достигает минимального значения в третьем слое МР3, чтобы затем снова ступенчато подняться до пятого слоя МР5, несмотря на продолжающую увеличиваться константу решетки а. Благодаря этому в середине буфера 40 сформирован особо мягкий слой МР3. Хотя твердость слоя МР5 может быть ниже, чем у слоя MPI, твердость буфера у слоев МР3 МР5 возрастает при более высоких константах решетки и подавляет распространение сдвигов.

На иллюстрации, представленной на фигуре 3b, изображена еще одна каскадная солнечная батарея с последовательностью слоев, соответствующей фигуре 1. Ниже поясняются только отличия от формы исполнения на фигуре 1. На диаграмме D2 представлен график содержания алюминия для первых пяти слоев буфера MP1-МР5. При этом содержание алюминия в слоях MP1 и МР2 одинаково, но при переходе к слою МР3 оно снижается. У слоев МР3 и МР4 содержание алюминия так же одинаково, а у слоя МР5 оно еще ниже. На диаграмме D1 представлен график нанотвердости NH для первых пяти слоев MP1-МР5 Согласно ему нанотвердость NH первого слоя MP1 имеет максимальное значение и ступенчато снижается до второго слоя МР2, чтобы снова ступенчато возрасти к третьему слою МР3. При этом, однако, нанотвердость NH третьего слоя МР3 меньше, чем нанотвердость NH первого слоя MP1. Начиная с третьего слоя МР3, нанотвердость NH ступенчато снижается к четвертому слою МР4, причем нанотвердость NH четвертого слоя МР4, однако, ниже, чем нанотвердость NH второго слоя МР2. Начиная с четвертого слоя МР4, нанотвердость NH ступенчато повышается к пятому слою МР5, причем нанотвердость NH пятого слоя МР5, однако, меньше, чем нанотвердость NH третьего слоя МР3 и меньше, чем нанотвердость NH первого слоя MP1.

Преимущество формирования нескольких минимумов, применительно также к значениям нанотвердости NH, состоит в том, что релаксация, если она вообще возникает, развивается преимущественно в мягких слоях в пределах буфера, а распространение сдвигов в полупроводниковых солнечных батареях эффективно подавляют с помощью нескольких мягких слоев буфера.

Иллюстрация на фигуре 3с представляет вторую форму исполнения согласно изобретению с последовательностью двух лежащих друг на друге метаморфных буферов, то есть метаморфного буфера 40 и еще одного метаморфного [буфера] 50. Ниже поясняются только отличия от формы исполнения, изображенной на фигуре 1. На второй солнечной батарее с другой или же с одинаковой второй константой решетки, обозначенной как IGA1 вместо IGA, сформирован второй метаморфный буфер 50 с последовательностью в общей сложности пяти метаморфных слоев, начиная с седьмого метаморфного слоя МР7 и до одиннадцатого метаморфного слоя МР11 включительно. К одиннадцатому метаморфному слою MP 11 примыкает третья солнечная батарея IGA2. Константа решетки а второго метаморфного буфера 50 в среднем больше, чем средняя константа решетки а первого буфера 40. Видно, что графики (профиль) константы решетки у последовательности слоев каждого конкретного буфера сравнимы друг с другом, то есть у предпоследнего слоя первого буфера 40 и предпоследнего слоя второго метаморфного буфера 50 константа решетки а максимальна в пределах данного конкретного буфера.

Из соображений обзорности первая диаграмма D1 для обоих буферов не изображена. На второй диаграмме D2 представлены график изменений концентрации алюминия и график изменений концентрации индия для обоих буферов 40 и 50. Из нее следует, что в пределах первого буфера 40 у первого слоя MP1 и второго слоя МР2 концентрация алюминия одинакова и одновременно максимальна в пределах первого буфера 40. Начиная со второго слоя МР2, концентрация алюминия ступенчато снижается к третьему слою МР3 и четвертому слою МР4, причем концентрация алюминия в третьем слое МР3 и в четвертом слое МР4 одинакова. От четвертого слоя МР4 концентрация алюминия ступенчато снижается к пятому слою МР5, а к шестому слою МР6 снова ступенчато возрастает. При этом концентрация алюминия в шестом слое МР6, однако, ниже, чем концентрация алюминия в четвертом слое МР4. Какая-либо концентрация алюминия во второй солнечной батарее IGA1 отсутствует.

Во втором буфере 5 седьмой слой МР7 характеризуется максимальной концентрацией алюминия. Начиная с седьмого слоя МР7, концентрация алюминия ступенчато снижается от слоя к слою вплоть до десятого слоя.

Что касается концентрации индия, то в первом буфере 40, начиная с первого слоя MP1 и до пятого слоя МР5, создан ступенчатый подъем от слоя к слою. Начиная с пятого слоя МР5 при переходе к шестому слою МР6 и второй полупроводниковой солнечной батарее IGA1, концентрация индия ступенчато снижается приблизительно до значения концентрации, соответствующего четвертому слою МР4, чтобы в прохождении дальнейшей последовательности слоев вплоть до седьмого слоя МР7 во втором буфере 50 снова ступенчатым образом возрасти. Начиная с седьмого слоя МР7 вплоть до десятого слоя MP 10 от слоя к слою сформировано ступенчатое увеличение в концентрации индия. Начиная с десятого слоя MP 10 к одиннадцатому слою МНИ концентрация индия ступенчатым образом снижается приблизительно до концентрации, соответствующей девятому слою МР9.

Необходимо отметить, что предпочтительно сформировать графики (траектории) нанотвердости NH, представленные в контексте второй и третьей форм исполнения согласно изобретению, также и в четвертой форме исполнения. Подразумевается, что различные формы графика нанотвердости NH можно также комбинировать.

Преимуществом является тот факт, что изготовлением последовательности многослойных метаморфных буферов можно без каких-либо трудностей компенсировать более значительные различия в решетках отдельных полупроводниковых солнечных батарей, которые укладывают друг на друга по месту. При этом возможные сдвиги надежно гасятся (улавливаются) в более мягких слоях метаморфных буферов 40 и 50.

На фигуре 4 и на фигуре 5 также показаны соответствующие нынешнему техническому уровню формы исполнения метаморфного буфера 100. В настоящем случае метаморфный буфер 100 также состоит из шести метаморфных слоев, обозначенных от МРА до MPF. На обеих фигурах 4 и 5 из соображений обзорности графики (профили) для констант решеток а либо же, соответственно, для энергетического зазора Eg, нанотвердости NH представлены на каждой конкретной первой диаграмме D1, а графики концентрации алюминия и концентрации индия - на соответствующей диаграмме D2. Ниже даны пояснения только отличий от форм исполнения согласно изобретению.

Применительно к форме исполнения, представленной на фигуре 4, видно, что согласно первой диаграмме D1 нанотвердость NH ступенчатым образом снижается, начиная с первого слоя МРА и вплоть до пятого слоя МРЕ буфера 100. На второй диаграмме D2 концентрация алюминия в пределах буфера 100 постоянна. Эту комбинацию материалов на нынешнем уровне техники часто выбирают такой, чтобы все слои буфера обладали достаточной прозрачностью для света, который еще можно использовать для фотоэлектрического преобразования энергии в расположенных ниже солнечных батареях. Для релаксации, это однако, является недостатком.

На фигуре 5 график нанотвердости NH соответствует форме исполнения на фигуре 4, в то время как концентрация алюминия в пределах буфера 100 постоянно возрастает ступенчатым образом. Эту комбинацию материалов на нынешнем уровне техники часто выбирают такой, чтобы все слои буфера обладали достаточной прозрачностью для света, который еще можно использовать для фотоэлектрического преобразования энергии в расположенных ниже солнечных батареях. Слои AlInGaAs и AlInGaP с меньшими значениями содержания индия либо же, соответственно, с меньшими константами решетки, как правило, все равно более прозрачны, чем слои с более высоким содержанием индия. Таким образом, для слоев с малым содержанием индия можно также выбрать меньшее содержание алюминия, чтобы обеспечить достаточную прозрачность. Это, однако, тоже представляет собой недостаток для релаксации.

1. Каскадная солнечная батарея, содержащая:

- первую полупроводниковую солнечную батарею (GA), причем в первой полупроводниковой солнечной батарее (GA) имеется р-n переход из первого материала с первой константой решетки;

- вторую полупроводниковую солнечную батарею (IGA, IGA1), причем во второй полупроводниковой солнечной батарее (IGA, IGA1) имеется р-n переход из второго материала со второй константой решетки, и

- первая константа решетки меньше, чем вторая константа решетки, и

- метаморфный буфер (40), причем метаморфный буфер (40) содержит

последовательность из первого, нижнего слоя AlInGaAs или AlInGaP, и второго, среднего слоя AlInGaAs или AlInGaP, и третьего, верхнего слоя AlInGaAs или AlInGaP, и метаморфный буфер (40) сформирован между первой полупроводниковой солнечной батареей (GA) и второй полупроводниковой солнечной батареей (IGA, IGA1), и константа решетки (а) метаморфного буфера (40) изменяется по толщине метаморфного буфера (40),

отличающаяся тем, что

между по меньшей мере двумя слоями (МР1, МР2, МР3, МР4, МР5, МР6) метаморфного буфера (40) константа решетки (а) и содержание индия увеличиваются, а содержание алюминия уменьшается.

2. Каскадная солнечная батарея по п. 1, отличающаяся тем, что в последовательности из трех слоев (МР1, МР2, МР3, МР4, МР5, МР6) метаморфного буфера (40) содержание индия и константа решетки (а) от одного слоя (МР1, МР2, МР3, МР4, МР5, МР6) к следующему слою (МР1, МР2, МР3, МР4, МР5, МР6) соответственно возрастает, а содержание алюминия соответственно снижается.

3. Каскадная солнечная батарея по п. 1, отличающаяся тем, что между по меньшей мере двумя слоями (МР1, МР2, МР3, МР4, МР5, МР6) метаморфного буфера (40) содержание индия возрастает по меньшей мере на 1%, а содержание алюминия по меньшей мере на 1% снижается.

4. Каскадная солнечная батарея по п. 1, отличающаяся тем, что константа решетки метаморфного буфера в направлении второй полупроводниковой солнечной батареи (IGA) возрастает от слоя к слою соответственно по меньшей мере на

5. Каскадная солнечная батарея по п. 1, отличающаяся тем, что константа решетки метаморфного буфера в направлении второй полупроводниковой солнечной батареи (IGA) возрастает от слоя к слою соответственно предпочтительно по меньшей мере на

6. Каскадная солнечная батарея по п. 1, отличающаяся тем, что один слой метаморфного буфера имеет третью константу решетки, которая больше, чем константа решетки второй полупроводниковой солнечной батареи (IGA).

7. Каскадная солнечная батарея по п. 1, отличающаяся тем, что в пределах последовательности из трех слоев (МР1, МР2, МР3, МР4, МР5, МР6) метаморфного буфера (40) сформированы только слои AllnGaAs или только слои AllnGaP.

8. Каскадная солнечная батарея по п. 1, отличающаяся тем, что в последовательности из трех слоев (МР1, МР2, МР3, МР4, МР5, МР6) первый слой (МР1, МР2, МР3, МР4, МР5, МР6) имеет меньшую константу решетки (а) и меньшую нанотвердость (NH), чем второй слой (МР1, МР2, МР3, МР4, МР5, МР6), а второй слой (МР1, МР2, МР3, МР4, МР5, МР6) имеет меньшую константу решетки (а) и меньшую нанотвердость (NH), чем третий слой (МР1, МР2, МР3, МР4, МР5, МР6).

9. Каскадная солнечная батарея по п. 1, отличающаяся тем, что в последовательности слоев (МР1, МР2, МР3, МР4, МР5, МР6) первый слой (МР1, МР2, МР3, МР4, МР5, МР6) последовательности характеризуется большей константой решетки (а), чем первая полупроводниковая солнечная батарея (GA).

10. Каскадная солнечная батарея по п. 1, отличающаяся тем, что в последовательности из четырех слоев (МР1, МР2, МР3, МР4, МР5, МР6) предусмотрен четвертый слой (МР1, МР2, МР3, МР4, МР5, МР6), расположенный выше третьего слоя (МР1, МР2, МР3, МР4, МР5, МР6) и соединенный с третьим слоем (МР1, МР2, МР3, МР4, МР5, МР6) с материальным замыканием, причем четвертый слой (МР1, МР2, МР3, МР4, МР5, МР6) характеризуется меньшей константой решетки (а), чем третий слой (МР1, МР2, МР3, МР4, МР5, МР6).

11. Каскадная солнечная батарея по п. 1, отличающаяся тем, что в последовательности из трех слоев первый слой (МР1, МР2, МР3, МР4, МР5, МР6) соединен со вторым слоем (МР1, МР2, МР3, МР4, МР5, МР6), а второй слой (МР1, МР2, МР3, МР4, МР5, МР6) соединен с третьим слоем (МР1, МР2, МР3, МР4, МР5, МР6) с материальным замыканием.

12. Каскадная солнечная батарея по п. 1, отличающаяся тем, что предусмотрена третья полупроводниковая солнечная батарея (IGA2) и между второй полупроводниковой солнечной батареей (IGA, IGA1) и третьей полупроводниковой солнечной батареей (IGA2) сформирован еще один метаморфный буфер (50).

13. Каскадная солнечная батарея по одному из пп. 1-12, отличающаяся тем, что каждая из полупроводниковых солнечных батарей (GA, IGA, IGA1, IGA2) содержит P/N переход.

14. Каскадная солнечная батарея по одному из пп. 1-12, отличающаяся тем, что метаморфные буферные слои (МР1, МР2, МР3, МР4, МР5, МР6) не являются частью pn-перехода туннельного диода.

15. Каскадная солнечная батарея по одному из пп. 1-11, отличающаяся тем, что предусмотрен еще один метаморфный буфер (50), причем между двумя полупроводниковыми солнечными батареями расположена последовательность двух метаморфных буферов (40, 50).



 

Похожие патенты:

Многопереходное фотоэлектрическое устройство содержит первый и второй электроды, фотоэлектрический стек в электрическом контакте с указанными первым и вторым электродами и содержащий множество фотоэлектрических переходов, при этом каждый указанный фотоэлектрический переход включает электроноакцепторный полупроводниковый слой и светопоглощающий полупроводниковый слой, имеющий, в основном, большую рабочую функцию, чем указанный электроноакцепторный полупроводниковый слой, при этом указанные фотоэлектрические переходы разделены: рекомбинационной областью, включающей слой прозрачного и токопроводящего дырочного слоя в омическом контакте с указанным светопоглощающим полупроводниковым слоем указанного первого фотоэлектрического перехода, и прозрачный токопроводящий электроноакцепторный слой в омическом контакте с указанным электроноакцепторным полупроводниковым слоем указанного второго фотоэлектрического перехода; указанная рекомбинационная областью формирует градиентную рабочую функцию указанного прозрачного и токопроводящего дырочного слоя в омическом контакте с указанным светопоглощающим полупроводниковым слоем указанного первого фотоэлектрического перехода к указанному прозрачному и токопроводящему электроноакцепторному слою в омическом контакте с указанным электроноакцепторным полупроводниковым слоем указанного второго фотоэлектрического перехода, и имеющая толщину в пределах одного порядка величины суммы дебаевой длины всех слоев указанной рекомбинационной области.

Изобретение относится к полупроводниковым приборам, чувствительным к свету, предназначенным для преобразования света в электрическую энергию, в частности к многопереходным солнечным элементам.

Изобретение относится, в основном, к области фотоэлектрических элементов, а конкретно к фотоэлектрическим элементам для солнечного излучения (солнечным элементам).

Изобретение относится к оптоэлектронике. .

Способ формирования туннельного перехода (112) в структуре (100) солнечных элементов, предусматривающий попеременное осаждение вещества Группы III и вещества Группы V на структуре (100) солнечных элементов и управление отношением при осаждении указанного вещества Группы III и указанного вещества Группы V.

Изобретение относится к области электроники и может быть использовано при конструировании солнечных элементов, которые используются в энергетике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности и др.

Изобретение может быть использовано для преобразования солнечной энергии в электроэнергию. Согласно изобретению предложено фотоэлектрическое устройство (1), содержащее солнечный концентратор (2), имеющий кольцеобразную форму, в свою очередь содержащий внешний проводник (3), расположенный вдоль внешней части кольца; внешнюю люминесцентную пластину (22), имеющую трапециевидный профиль и имеющую внешнюю периферийную приемную поверхность, выполненную с возможностью приема светового излучения, падающего и приходящего от проводника (3); внутреннюю люминесцентную пластину (21), расположенную вдоль внутренней части кольца и имеющую трапециевидный профиль; наноструктурный полупроводниковый слой (23), лежащий между двумя пластинами (21, 22) таким образом, что большие основания соответствующих трапециевидных профилей обращены к нему, причем упомянутый полупроводниковый слой (23) выполнен с возможностью приема излучения, переданного внешней и внутренней пластинами (21, 22), и реализации фотоэлектрического эффекта; средство (3, 5) передачи, выполненное с возможностью сбора и концентрации падающего светового излучения на упомянутой периферийной приемной поверхности.

Изобретение относится к области гелиоэнергетики и касается конструкции фотоэлектрического модуля космического базирования. Фотоэлектрический модуль включает в себя нижнее защитное покрытие, на котором с помощью полимерной пленки закреплены кремниевые солнечные элементы с антиотражающим покрытием, и расположенное над лицевой поверхностью солнечных элементов верхнее защитное покрытие, которое скреплено с солнечными элементами промежуточной пленкой из оптически прозрачного полимерного материала.

Использование: для создания многоэлементных фотоприемников. Сущность изобретения заключается в том, что способ сборки матричного модуля на держатель содержит стадии нанесения криостойкого клея на тыльную поверхность растра матричного модуля и на держатель, ориентации матричного модуля относительно держателя, прижима матричного модуля к держателю, приклеивают матричный модуль на держатель с помощью приспособления типа «насадка» в виде цилиндрического колпака, плотно надеваемого на растр с помощью выступов на окружности основания и содержащего четыре выреза под метки совмещения, расположенные под углом 90° по отношению соседних меток друг к другу, предназначенных для ориентации матричного модуля относительно держателя с помощью инструментального микроскопа, кроме этого, содержащего дополнительно четыре выреза по углам фоточувствительного элемента, предназначенные для бездефектного надевания «насадки» на растр, а также содержащего в центре верха колпака метку в виде отверстия для ориентации и коническое углубление для прижима с помощью зондовой головки и возможности поворота «насадки» для совмещения меток, расположенных на растре и держателе.

Изобретение относится к устройствам регистрации видеоизображений. Видеосистема на кристалле содержит цветное фотоприемное устройство с функцией спектрального разделения светового потока в зависимости от глубины проникновения фотоэлектронов в кристалл.

Изобретение относится к области электровакуумной техники, в частности к полупроводниковым оптоэлектронным устройствам - фотокатодам, а именно к гетероструктуре для полупрозрачного фотокатода с активным слоем из арсенида галлия, фоточувствительного в видимом и ближнем инфракрасном диапазоне, и может быть использовано при изготовлении фоточувствительного элемента оптоэлектронных устройств: электронно-оптических преобразователей фотоумножителей, используемых в детекторах излучений.

Изобретение относится к 8-алкил-2-(тиофен-2-ил)-8H-тиофен[2,3-6]индол замещенным 2-цианоакриловым кислотам формулы (I) которые могут быть использованы как перспективные красители для сенсибилизации неорганических полупроводников в составе цветосенсибилизированных солнечных батарей, способу их получения, а так же промежуточным соединениям, которые используют для синтеза данных соединений.

Настоящее изобретение относится к технологии термофотоэлектрических преобразователей с микронным зазором (MTPV) для твердотельных преобразований тепла в электричество.

Использование: для изготовления модульных (гибридных) оптико-электронных наблюдательных и регистрирующих приборов различных спектров действия, предназначенных для эксплуатации в условиях низкой освещенности.

Изобретение относится к технологии оптоэлектроники и может быть использовано для получения полифункциональных пленочных инвертированных фотонных кристаллов с запрещенной зоной в видимой и ИК-области спектра, и пригоден для производства оптоэлектронных (электрооптических и магнитооптических) приборов на основе инвертированных фотонных кристаллов.

Изобретение относится к средствам для преобразования световой энергии в электрическую и может быть использовано в гелиоэнергетике. .

Изобретение относится к полупроводниковой электронике и может быть использовано для создания солнечных элементов. Метаморфный фотопреобразователь включает подложку (1) из GaAs, метаморфный буферный слой (2) и по меньшей мере один фотоактивный p-n-переход (3), выполненный из InGaAs и включающий базовый слой (4) и эмиттерный слой (5), слой (6) широкозонного окна из In(AlxGa1-x)As, где x=0,2-0,5, и контактный субслой (7) из InGaAs. Метаморфный фотопреобразователь, выполненный согласно изобретению, имеет повышенные величину фототока и КПД. 5 з.п. ф-лы, 4 ил.

Солнечный концентраторный модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами (4) Френеля на внутренней стороне фронтальной панели (3), тыльную панель (9) с фоконами (6) и солнечные элементы (7), снабженные теплоотводящими основаниями (8). Теплоотводящие основания (8) прикрепляют солнечные элементы (7) к тыльной стороне (9) тыльной панели (5) так, что центр фотоприемной площадки (10) каждого солнечного элемента (7) лежит на одной оси с центром (11) соответствующей линзы Френеля и совпадает с фокусом этой линзы. Солнечный концентраторный модуль (1) имеет повышенную энергопроизводительность и улучшенную разориентационную характеристику. 5 з.п. ф-лы, 3 ил.

Штабелевидная интегрированная многопереходная солнечная батарея с первым элементом батареи, причем первый элемент батареи включает в себя слой из соединения InGaP с первой константой решетки и первой энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и вторым элементом батареи, причем второй элемент батареи включает в себя слой из соединения InmРn со второй константой решетки и второй энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и третьим элементом батареи, причем третий элемент батареи включает в себя слой из соединения InxGa1-xAs1-yPy с третьей константой решетки и третьей энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и четвертым элементом батареи, причем четвертый элемент батареи включает в себя слой из соединения InGaAs с четвертой константой решетки и четвертой энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, причем для значений энергии запрещенной зоны справедливо соотношение Eg1>Eg2>Eg3>Eg4, и между двумя элементами батареи сформирована область сращения плат. Изобретение обеспечивает возможность повышения эффективности преобразования солнечного света. 16 з.п. ф-лы, 6 ил.

Заявленное изобретение относится к технике преобразования световой энергии в электрическую и предназначено для преобразования световой энергии в электрическую. Заявленная оптопара содержит излучатель, фотоприемный элемент, закрепленные на корпусе, причем в качестве излучателя света использована шаровая лампа, в качестве фотоприемного элемента использована батарея солнечных элементов, корпус выполнен в виде трубы из диэлектрического материала, на внешней боковой поверхности которого имеются распределители потенциала. Заявленная оптопара дополнительно включает сферическую отражающую поверхность, имеющую отверстие в боковой поверхности в виде круга и линзу с эллипсоидальной поверхностью, причем сферическая отражающая поверхность, линза с эллипсоидальной поверхностью, шаровая лампа и батарея солнечных элементов расположены на одной оптической оси, совпадающей с осью корпуса. В одном торце корпуса расположена сферическая отражающая поверхность, линза с эллипсоидальной поверхностью и шаровая лампа, а во втором торце – батарея солнечных элементов. Шаровая лампа расположена в центре сферической отражающей поверхности, линза с эллипсоидальной поверхностью расположена в отверстии шаровой сферической поверхности. Внутренние поверхности сферической отражающей поверхности и корпуса имеют зеркальное покрытие, батарея солнечных элементов выполнена на основе многослойных структур, обеспечивающих каскадное преобразование оптического излучения шаровой лампы. Технический результат - увеличение мощности, электрической прочности и снижение потери энергии в оптопаре. 1ил.
Наверх