Способ амплитудного двухмерного пеленгования

Изобретение относится к радиотехнике и может быть использовано в наземных и авиационных радиотехнических системах для всеракурсного определения направления на источники радиоизлучений. Достигаемый технический результат – обеспечение двухмерного всеракурсного пеленгования одновременно в двух ортогональных плоскостях, по азимуту и углу места. Указанный результат достигается за счет того, что способ амплитудного двухмерного пеленгования включает прием излучаемого сигнала с помощью идентичных разнонаправленных антенн, измерение амплитуды принятых сигналов, преобразование измерений в угловой спектр и определение направления на излучатель по его максимуму, при этом прием сигнала осуществляют не менее чем пятью антеннами с симметричными диаграммами направленности, углы ориентации фокальных осей антенн сдвинуты один относительно другого с равномерным перекрытием сектора сферического обзора. Операции, следующие за измерением амплитуд, выполняют как двухмерные, причем диаграммы направленности антенн определяют как функции их главного сечения от угла между фокальными осями и вектором двухмерного пеленга. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к радиотехнике и может быть использовано в наземных и авиационных радиотехнических системах для всеракурсного определения направления на источники радиоизлучений.

Известные способы амплитудного всеракурсного пеленгования, то есть с одновременным во всех направлениях обзором окружающего пространства, основаны на приеме излучений с помощью разнонаправленных антенн.

Известен (Патент РФ №2319975, 2006 г, G01S 5/04) способ амплитудного пеленгования, включающий прием сигнала с помощью идентичных антенн, фокальные оси которых сдвинуты в горизонтальной плоскости одна относительно другой с равномерным перекрытием сектора кругового обзора и таким образом, что диаграммы направленности смежных антенн пересекаются на уровне не менее минус трех децибел, измерение мощности принятых сигналов, определение канала с максимальной мощностью, двух смежных с ним и азимута на излучатель по соотношению этих мощностей.

Под фокальной осью понимается вектор, исходящий из точки расположения антенны в направлении максимума ее диаграммы направленности, которую в главном сечении, горизонтальной плоскости, определяют по формуле G(θ)=sin(2,75⋅θ/δθ)/(2,75⋅0/δθ), где θ - азимут на излучатель δθ - ширина диаграммы направленности.

Способ применим для одновременного пеленгования во всех направлениях в одной плоскости. Диапазон углов места, в пределах которого возможно измерение азимута, ограничен шириной диаграммы направленности в вертикальной плоскости. Вследствие привлечения при расчетах измерений только трех каналов снижается чувствительность пеленгования.

Из известных способов наиболее близким к предлагаемому по технической сущности (прототип) является амплитудный способ пеленгования (Козьмин В.А., Уфаев В.А. Алгоритмы и характеристики точности амплитудного пеленгования. Антенны, 2010, №5, с. 55-60), включающий прием излучаемого сигнала с помощью не менее трех идентичных антенн, фокальные оси которых сдвинуты в горизонтальной плоскости одна относительно другой с равномерным перекрытием сектора кругового обзора по азимуту, измерение амплитуды принятых антеннами сигналов, преобразование результатов измерений в угловой спектр и определение азимута на излучатель как положения максимума углового спектра, который получают путем взвешенного суммирования измеренных амплитуд с весами, пропорциональными значениям диаграмм направленности антенн в азимутальной плоскости пеленгования с учетом углов их ориентации по азимуту, по формуле преобразования

,

где θ - азимут на излучатель, N≥3 - число антенн, Un - амплитуда сигнала, принятого n-й антенной, ϕn - угол ее ориентации по азимуту, G(θ) - диаграмма направленности антенн в горизонтальной плоскости.

Поиск максимума может выполняться путем расчета значений углового спектра с заданным шагом и их сравнением; методом итераций; аналитически, когда диаграммы направленности антенн описываются кардиоидой.

Способ применим для пеленгования в секторе кругового обзора, но только в одной плоскости и в пределах ограниченного, шириной диаграммы направленности антенн, диапазона. Одновременное двухмерное и всеракурсное пеленгование в двух ортогональных плоскостях, по азимуту и углу места, не достигается.

Технической задачей настоящего изобретения является обеспечение двухмерного всеракурсного пеленгования одновременно в двух ортогональных плоскостях, по азимуту и углу места.

Решение данной задачи сопряжено со сложностями размерности. При этом не удается использовать известные варианты. Так, измерение, дополнительно к азимуту, углов места согласно способу-прототипу, с предварительной установкой плоскости пеленгования по вертикали, возможно лишь в ограниченном шириной диаграммы направленности антенн азимутальном диапазоне, всеракурсность пеленгования не обеспечивается.

Поставленная задача решается тем, что в известном способе амплитудного пеленгования, включающем прием излучаемого сигнала с помощью идентичных разнонаправленных антенн, измерение амплитуды принятых антеннами сигналов, преобразование результатов измерений в угловой спектр путем взвешенного суммирования измеренных амплитуд с весами, пропорциональными значениям диаграмм направленности антенн с учетом углов их ориентации, и определение направления на излучатель по положению максимума углового спектра, согласно изобретению прием сигнала осуществляют не менее чем пятью антеннами с симметричными диаграммами направленности относительно фокальных осей, углы ориентации которых сдвинуты один относительно другого с равномерным перекрытием сектора сферического обзора, а операции, следующие за измерением амплитуд, выполняют с учетом неопределенности направления на излучатель по двухмерному пеленгу, при этом диаграммы направленности антенн определяют как функцию их главного сечения от угла между фокальными осями антенн и вектором двухмерного пеленга, а преобразование в угловой спектр осуществляют по формуле

где θ, β - возможный азимут и угол места на излучатель, N - число антенн, Un - измеренная амплитуда сигнала, принятого n-к антенной, Dn(θ,β)=G(ωn(θ,β)) - ее диаграмма направленности, G(⋅) - главное ее сечение, ωn(θ,β)=arccos(cosβ⋅cosψn⋅cos(θ-ϕn)+sinβ⋅sinψn) - угол между вектором двухмерного пеленга и фокальной осью антенны, ϕn, ψη - углы ориентации ее фокальной оси по азимуту и углу места.

Наилучшим образом углы ориентации антенн устанавливают исходя из того, что антенну с номером n=N-1 ориентируют в зенит, с номером n=N-2 - отвесно вниз, а углы ориентации других антенн с номерами n=0, 1, …, Ν-3 определяют по формулам

где К1>2, К2≥1 - число антенн в ярусе и число ярусов, {⋅}, 〈⋅〉 - операции определения остатка от деления и целой части числа, охваченного скобками.

При этом угловой спектр определяют в виде его при фиксированном угле места первого сечения, по максимуму которого определяют азимут на излучатель, и в виде его при фиксированном полученном азимуте второго сечения, по максимуму которого определяют угол места на излучатель, при этом фиксированный угол места определяют как среднее взвешенное углов места ориентации антенн пропорционально квадратам измеренных амплитуд.

Предлагаемый способ отличается от известных совокупностью следующих признаков.

1. Углы ориентации фокальных осей антенн сдвигают с равномерным перекрытием всего сектора сферического обзора. Образно говоря, антенная система представляет собой свернутого в клубок ежика с иголками-антеннами, равномерно распределенными во всех направлениях. Этим обеспечивается необходимое условие энергетической доступности излучений в пределах окружающей сферы.

2. Прием сигнала осуществляют не менее чем пятью антеннами с симметричными диаграммами направленности. Первое условие обусловлено необходимостью минимально трех антенн для обзора горизонтальной плоскости и двух - для приема сверху, снизу. Второе исходит из условия равномерности перекрытия сектора сферического обзора.

3. Операции, следующие за измерением амплитуд, выполняют как двухмерные с учетом неопределенности направления на излучатель по двухмерному пеленгу, то есть по азимуту и углу места.

Здесь выполнено ранее не известное обобщение формулы преобразования углового спектра способа-аналога на двухмерный вариант. В дополнение к двухмерности учтено не присущее одномерному аналогу свойство зависимости двухмерных диаграмм направленности антенн не просто от сдвига угла ориентации антенн, но от угла между векторами: фокальными осями (векторами ориентации) антенн и вектором двухмерного пеленга.

Согласно неравенству Коши-Буняковского максимум двухмерного углового спектра приходится в направлении излучателя. Но его определение и максимизация сопряжены со значительными затратами. Так, при шаге 1 градус получают 360⋅90≈3,2⋅104 значений углового спектра, что примерно на два порядка больше, чем при одномерном пеленговании.

4. Частный вариант способа, когда угловой спектр определяют в виде его сечений в комбинации с детализированной ориентацией антенн, позволяет упростить выполнение двухмерных операций и свести их к двум одномерным преобразованиям. Это сокращает число операций в 72 раза для условий предыдущего пункта. Основой данного решения, в соответствии с расчетной формулой для углов ориентации антенн, является их поярусное распределение, когда группы антенн с одинаковой ориентацией по углу места разно и равномерно ориентируют по азимуту. В результате происходит дублирование операции определения углового спектра способа-прототипа для возможных по углу места поворотов плоскости пеленгования с объединением результатов путем взвешенного суммирования. В данном случае важна очередность действий, обусловленная симметрией ориентации антенн в ярусах по азимуту и, в общем случае, отсутствием таковой по углу места. Равномерность распределения углов ориентации антенн позволяет осуществить первичную оценку угла места как их среднего с весами, пропорциональными квадратам измеренных амплитуд. Достигаемой при этом точности достаточно для последующего уточнения по сечениям двухмерного углового спектра.

Таким образом, применение антенн с симметричными диаграммами направленности и равномерное перекрытие всего сектора сферического обзора, регистрация направления максимума интенсивности излучения по угловому спектру в двухмерном варианте, когда диаграммы направленности антенн определяют как функцию их главного сечения от угла между фокальными осями и вектором двухмерного пеленга, в соответствии с предложенными операциями и условиями их выполнения, позволяет решить поставленную техническую задачу: обеспечить двухмерное всеракурсное пеленгование одновременно в двух ортогональных плоскостях, по азимуту и углу места.

На фиг. 1 показана структурная схема пеленгатора по предложенному способу;

на фиг. 2 - примеры квантования углов ориентации антенн;

на фиг. 3 - двухмерный угловой спектр и его сечения;

на фиг. 4 - зависимости погрешностей двухмерного пеленгования от угла места на излучатель.

Пеленгатор (фиг. 1) содержит антенны 1.1-1.N, приемные устройства 2.1-2.N, амплитудные детекторы 3.1-3.N, коммутатор 4, запоминающее устройство (ЗУ) углов ориентации антенн 5, блок определения двухмерных диаграмм направленности 6, анализатор углового спектра 7, устройство определения максимума 8, устройство первичной оценки 9. Одноименные антенны 1.1-1.N, приемные устройства 2.1-2.N и амплитудные детекторы 3.1-3.N соединены последовательно и подключены к одноименным входам коммутатора 4, выход которого соединен с входом устройства первичной оценки 9 и первым входом анализатора углового спектра 7, подключенного выходом к входу устройства определения максимума 8. Запоминающее устройство углов ориентации антенн 5 через первый вход блока определения двухмерных диаграмм направленности 6 и его выход подключено ко второму входу анализатора углового спектра 7. Устройство первичной оценки 9 выходом соединено со вторым входом блока определения двухмерных диаграмм направленности 6. Выход устройства определения максимума 8 является выходом пеленгатора.

Приемные устройства 2.1-2.N идентичные, обеспечивают необходимую фильтрацию и усиление сигнала. Амплитудные детекторы 3.1-3.N также идентичные с представлением результатов детектирования в цифровом виде. Коммутатор 4 из N положений на одно направление обеспечивает поочередный съем информации с амплитудных детекторов. Другие составные части пеленгатора представляют собой вычислительные устройства с функциями, соответствующими их наименованию.

Число антенн в пеленгаторе N не менее пяти. Антенны разнонаправленные, расположены в пределах небольшой области пространства, которая относительно удаленного излучателя считается точечной. Например, в элементах летательных аппаратов, на сферической поверхности аэростатов, поверхности Земли при радиоастрономических наблюдениях. На сфере антенны устанавливают перпендикулярно ее поверхности в точках с угловыми координатами, определяемыми углами ориентации антенн.

Антенны идентичные с симметричными двухмерными диаграммами направленности в виде тела вращения относительно фокальной оси. В частности, антенны способа-аналога с главным в фокальной оси антенн сечением G(θ)=sin(2,75⋅θ/δθ)/(2,75⋅θ/δθ), где δθ - ширина диаграммы направленности. Направление задают углами местной сферической системы координат: азимутом -180°<θ≤180° и углом места -90°<β≤90°. Отсчет положительных значений азимута выполняют в горизонтальной плоскости по часовой стрелке от опорного направления, например от оси летательного аппарата, угла места от земной поверхности к зениту.

Углы ориентации фокальных осей антенн, которые заносят до начала пеленгования в запоминающее устройство 5, сдвинуты один относительно другого с равномерным перекрытием всего сектора сферического обзора. Их устанавливают исходя из того, что антенну с номером n=N-1 ориентируют в зенит, с номером n=N-2 - отвесно вниз, а углы ориентации других антенн с номерами n=0, 1, …, N-3 определяют по формулам

где К1>2, К2≥1 - число антенн в ярусе, число ярусов, {⋅}, 〈⋅〉 - операции определения остатка от деления и целой части числа, охваченного скобками.

В результате такого квантования соседние антенны внутри яруса равноудалены по пеленгу, а ярусы по углу места на кванты, равные

Ширину диаграммы направленности устанавливают из условия примерного ее равенства максимальному из квантов.

Число антенн в ярусе К1 и ярусов К2 целесообразно выбирать из условия минимума различия самих квантов. Поскольку Ν=К1⋅К2+2, то полное совпадение размеров квантов Δϕ=Δψ происходит при условии Ν=(К2+1)⋅К2⋅2+2, то есть при числе антенн, равном N=6, 14, 26, 42…

Примеры квантования углов ориентации антенн описанным образом показаны на фиг. 2 точками на плоскости «угол места - азимут», с указанием под рисунками числа антенн и рекомендуемой ширины диаграммы направленности. Для рассматриваемой далее системы из шести антенн ширина диаграммы направленности равна 90 градусов, как и угловые расстояния до четырех ближайших антенн.

Последующее функционирование пеленгатора состоит в следующем.

Излучение источника принимают антеннами 1.1-1.N. С помощью приемников 2.1-2.N и амплитудных детекторов 3.1-3.N измеряют амплитуду принятых сигналов Un, где n=0, l, …, N-l, которая зависит от направления на излучатель

где А - амплитуда сигнала на выходе изотропной всенаправленной антенны, η - коэффициент направленного действия антенн, Dn(θ,β) - двухмерная диаграмма направленности, θ0, β0 - азимут и угол места излучателя.

Измеренные амплитуды поочередно считывают коммутатором 4 и подают на первый вход анализатора углового спектра 7. Одновременно с этим в блоке 6 определения двухмерных диаграмм направленности рассчитывают угол между вектором пеленга и фокальной осью антенн

ωn(θ,β)=arccos(cosβ⋅cosψn⋅cos(θ-ϕn)+sinβ⋅sinψn). (4)

При выводе этой формулы использовано известное определение угла между векторами (Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. - М.: Наука, 1986, с. 155).

Углы ориентации антенн по азимуту φη и углу места ψη считывают из запоминающего устройства 5. Затем на основе известной G(θ) одномерной диаграммы направленности определяют двухмерную диаграмму направленности как ее функцию от полученного угла между векторами

Dn(θ,β)=G(ωn(θ,β)). (5)

Расчеты по формулам (4), (5) выполняют с заданным шагом, например 1°, во всем диапазоне изменения азимута и угла места. Результаты передают на второй вход анализатора спектра 7, где измеренные амплитуды преобразуют в угловой спектр по формуле

В соответствии с этой формулой выполняют взвешенное суммирование измеренных амплитуд с весами, указанными в квадратных скобках и пропорциональными значениям двухмерных диаграмм направленности антенн.

Согласно неравенству Коши-Буняковского (Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. - М.: Наука, 1986, с. 142) имеет место . Равенство достигается, когда Un=c⋅Dn(θ,β), где с - постоянная величина. То есть, с учетом (3) зависимости амплитуды сигналов от направления на источник, тогда, когда оценочные и истинные углы равны θ=θ0, β=β0.

На верхнем рисунке фиг. 4 показан нормированный на двухмерный угловой спектр для системы из 6 антенн, при азимуте и угле места излучателя, равных -45° и 45°. Максимум спектра ориентирован в направлении излучателя.

С учетом указанного свойства двухмерный пеленг на излучатель определяют с помощью устройства 8 по положению максимума углового спектра

.

Результат выдают потребителю.

Когда углы ориентации антенн определены соотношением (1), двухмерный угловой спектр определяют в более компактной форме, в виде его сечений, следующим образом.

Первоначально с помощью устройства 9 выполняют первичную оценку угла места на источник как среднего взвешенного значения углов места ориентации антенн пропорционально квадратам измеренных амплитуд

Антенне с большей амплитудой сигнала придают больший вес, угол ее ориентации учитывают приоритетно. В примере из шести антенн первичная оценка угла места составляет =59°. Этого достаточно для последующего.

Первое сечение определяют как функцию неизвестного азимута при полученном фиксированном угле места . На фиг. 3 слева внизу показано данное сечение. Видно, что максимум углового спектра лежит в окрестности истинного азимута -45°, который и определяют путем однопараметрической максимизации . В обеспечение этого на второй вход блока определения двухмерных диаграмм направленности 6 подают первичную оценку (7) из устройства 9 ее оценки. Здесь преобразования по формулам (4), (5) в блоке 6 и преобразование (6) в анализаторе углового спектра 7 выполняют как одномерные.

Второе сечение, рисунок на фиг. 3 внизу справа, определяют аналогично, но при фиксированном полученном азимуте =45° и как функцию от неизвестного угла места . Угол места излучателя находят по максимуму второго сечения .

Эффективность изобретения выражается в обеспечении двухмерного всеракурсного пеленгования одновременно в двух ортогональных плоскостях, по азимуту и углу места.

Количественная оценка выполнена методом моделирования при отношении амплитуды сигнала к среднему квадратическому значению шума на выходе изотропной антенны, равном 20 (26 дБ). Коэффициент направленного действия, необходимый при определении амплитуды (3), рассчитывался с учетом угла между вектором пеленга и фокальной осью антенн по формуле

.

Для системы из шести антенн с шириной диаграммы направленности 90° он равен 6.

На фиг. 4 вверху показаны зависимости погрешностей (разностей измеренных и истинных значений) определения азимута Δθ° и угла места Δβ° от его истинного значения, а также, внизу, средней квадратичной погрешности определения угла между векторами истинного и измеренного двухмерного пеленга как корня квадратного из среднего значения квадрата этой ошибки. Результаты получены по серии из 50 экспериментов, в которых азимут источника изменялся равновероятно во всех направлениях. Для азимута характерно возрастание погрешности его определения Δθ° в приполярных районах β=±90°, что связано с особенностями сферической системы координат. Средняя квадратичная погрешность определения угла между векторами истинного и измеренного пеленга примерно одинакова во всех ракурсах, как и требовалось, а ее среднее значение составляет 1,8 градусов.

Погрешности пеленгования снижаются с увеличением числа антенн, что обусловлено в большей степени уменьшением допустимой ширины диаграммы направленности и увеличением коэффициента направленного действия антенн.

Таким образом, предложенное техническое решение обеспечивает двухмерное всеракурсное пеленгование одновременно в двух ортогональных плоскостях, по азимуту и углу места.

1. Способ амплитудного двухмерного пеленгования, включающий прием излучаемого сигнала с помощью идентичных разнонаправленных антенн, измерение амплитуды принятых антеннами сигналов, преобразование результатов измерений в угловой спектр путем взвешенного суммирования измеренных амплитуд с весами, пропорциональными значениям диаграмм направленности антенн с учетом углов их ориентации, и определение направления на излучатель по положению максимума углового спектра, отличающийся тем, что прием сигнала осуществляют не менее чем пятью антеннами с симметричными диаграммами направленности относительно фокальных осей, углы ориентации которых сдвинуты один относительно другого с равномерным перекрытием сектора сферического обзора, а операции, следующие за измерением амплитуд, выполняют с учетом неопределенности направления на излучатель по двухмерному пеленгу, при этом диаграммы направленности антенн определяют как функцию их главного сечения от угла между фокальными осями антенн и вектором двухмерного пеленга, а преобразование в угловой спектр осуществляют по формуле

,

где θ, β - возможный азимут и угол места на излучатель, N - число антенн, Un - измеренная амплитуда сигнала, принятого n-й антенной, Dn(θ,β)=G(ωn(θ,β)) - ее диаграмма направленности, - главное ее сечение, ωn(θ,β)=arccos(cosβ⋅cosψn⋅cos(θ-ϕn)+sinβ⋅sinψn) - угол между вектором двухмерного пеленга и фокальной осью антенны, ϕn, ψn - угол ориентации ее фокальной оси по азимуту и углу места.

2. Способ амплитудного двухмерного пеленгования по п. 1, отличающийся тем, что углы ориентации антенн устанавливают исходя из того, что антенну с номером n=N-1 ориентируют в зенит, с номером n=N-2 - отвесно вниз, а углы ориентации других антенн с номерами n=0, 1, …, N-3 определяют по формулам

где K1>2, K2≥1 - число антенн в ярусе и число ярусов, - операции определения остатка от деления и целой части числа, охваченного скобками.

3. Способ амплитудного двухмерного пеленгования по п. 1, 2, отличающийся тем, что угловой спектр определяют в виде его при фиксированном угле места первого сечения, по максимуму которого определяют азимут на излучатель, и в виде его при фиксированном полученном азимуте второго сечения, по максимуму которого определяют угол места на излучатель, при этом фиксированный угол места определяют как среднее взвешенное углов места ориентации антенн пропорционально квадратам измеренных амплитуд.



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано в системах радиомониторинга при решении задачи скрытого определения координат источников радиоизлучений (ИРИ), в частности для определения координат ИРИ с борта летательного аппарата (ЛА).

Изобретение относится к технике связи и может использоваться для определения пространственных координат (ПК) источника радиоизлучения (ИР), находящегося на стационарном или подвижном объекте.

Изобретение относится к области радиотехнических систем определения угловых координат источника сигнала. Достигаемый результат - повышение точности пеленгования источника радиоизлучения широкополосного сигнала при сохранении единственности измерения сигналов на выходах пеленгационных каналов.

Изобретение относится к области систем для контроля за возникновением опасных условий, связанных с утечками газа, которые способны определять местонахождение носимых датчиков содержания газа в пределах контролируемой зоны.

Изобретение относится к области радиотехнической разведки. Достигаемый технический результат - оперативная оценка наличия и характера траектории полета воздушного объекта.

Изобретение относится к системам определения местоположения. Технический результат заключается в усовершенствовании способа определения местоположения в закрытых помещениях.

Изобретения относятся к радиотехнике и могут быть использованы для определения координат источников радиоизлучений в ультракоротковолновом (УКВ) и сверхвысокочастотном (СВЧ) диапазонах радиоволн, использующих узкополосные сигналы.

Изобретение относится к области локационной техники и может быть использовано в системах поиска объектов. Достигаемый технический результат - повышение точности определения направления на импульсные излучатели.

Изобретение относится к радиотехнике и может быть использовано для определения местоположения и скорости априорно неизвестного источника радиоизлучения (ИРИ). Достигаемый технический результат - определение за один этап обработки одновременно координат и скорости ИРИ.

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - отсутствие ограничений на применение способа по рабочему сектору углового положения источников радиоизлучений (ИРИ) и совокупности полученных реальных измерений; упрощение процесса получения интервальных оценок углового положения ИРИ; повышение адекватности интервальных оценок углового положения ИРИ при сохранении повышенного быстродействия (скорости) обработки сигналов при пеленгации радиосигналов нескольких ИРИ, работающих на одной частоте, с использованием антенных систем (АС), состоящих из слабонаправленных элементов (вибраторов).

Изобретение относится к измерительной технике и может быть использовано в системах радиолокации, навигации, связи для определения местоположения излучателей и синхронизации. Достигаемый технический результат - расширение области применения способа на класс непрерывных радиосигналов. Указанный результат достигается за счет того, что способ включает прием анализируемого радиосигнала на заданном интервале времени и прием опорного радиосигнала, формирование их корреляционного отклика и определение положения его максимума, при этом прием опорного радиосигнала начинают с запаздыванием на абсолютное значение минимально измеряемой задержки, а завершают с опережением на величину максимально измеряемой задержки соответственно относительно начала и окончания приема анализируемого радиосигнала. 2 ил.

Изобретение относится к радиотехнике и может быть использовано в системах обнаружения и пеленгования сигналов источников радиоизлучения. Достигаемый технический результат - повышение точности пеленгования в условиях априорной неопределенности относительно поляризационных и пространственных параметров радиосигналов, шумов и помех, когда налагаются ограничения на габаритные размеры пеленгаторной антенной системы. Способ основан на измерении ортогональных компонент Еx1, Еy1, Ez1 и Еx2, Еy2, Еz2 векторов напряженности электрического поля E1 и Е2 принятого аналогового в общем случае эллиптически поляризованного радиосигнала в моменты времени t1 и t2 с помощью триортогональной антенной системы, определении ориентации векторов E1 и Е2 в пространстве и измерении значения азимута θ и угла места β, определяемых ориентацией линии пересечения плоскостей Ω1 и Ω2, проходящих через центр триортогональной антенной системы и к которым перпендикулярны соответствующие векторы E1 и Е2. 8 ил.

Изобретение предназначено для определения местоположения аварийных радиобуев (АРБ), передающих радиосигналы бедствия на частоте 121,5 МГц и в диапазоне частот 406-406,1 МГц. Достигаемый технической результат изобретения - расширение функциональных возможностей системы путем формирования измерительных баз косвенным методом, точного и однозначного определения местоположения аварийных радиобуев, размещенных на судах и самолетах, потерпевших аварию. Указанный результат достигается за счет того, что спутниковая система для определения местоположения судов и самолетов, потерпевших бедствие, содержит два аварийных радиобуя, искусственный спутник Земли (ИЗС), пять приемных антенн, три приемных устройства, два запоминающих устройства, передатчик с антенной, пункт приема информации, содержит также приемное устройство с приемной антенной, два устройства обработки информации, устройство сопряжения с сетями связи, устройство контроля и управления, устройство связи поисково-спасательных организаций, при этом .третье приемное устройство содержит пять приемных антенн, шесть смесителей, пять усилителей первой промежуточной частоты, шесть перемножителей, пять узкополосных фильтров, блок поиска, два гетеродина, обнаружитель фазоманипулированных (ФМн) сигналов, удвоитель фазы, два измерителя ширины спектра, блок сравнения, пороговый блок, линию задержки, ключ, усилитель второй промежуточной частоты, демодулятор ФМн сигналов, фильтр нижних частот, шесть фазометров, три вычитателя, четыре сумматора. 4 ил.

Изобретение относится к области локационной техники и может быть использовано в системах поиска и обнаружения объектов. Достигаемый технический результат – увеличение точности определения дальности импульсных излучателей. Указанный результат достигается в устройстве обнаружения импульсных излучателей за счет использования второго постоянного запоминающего устройства, при этом группа выходов блока определения временного интервала соединена с первой группой входов второго постоянного запоминающего устройства, вторая группа входов и группа выходов которого соединены с датчиком базового расстояния между приемниками и с второй группой входов вычислителя, кроме того, блок определения временного интервалов содержит счетчик, линию задержки на установку счетчика, блок последовательно соединенных интегральных линий задержек, элемент ИЛИ, блок параллельных элементов совпадения, причем вход элемента ИЛИ является первым входом блока определения временного интервала, первые входы элементов совпадения и вход линии задержки на установку счетчика является вторым входом блока определения временных интервалов, выход элемента ИЛИ соединен с первым входом счетчика, второй вход которого соединен с линией задержки на установку счетчика, и входом блока соединен с вторым входом элемента ИЛИ, а группа выходов соединена с группой входов блока параллельных элементов совпадения, группа выходов которого, а также группа выходов счетчика являются группой выходов блока определения временного интервала. 3 ил.

Изобретение относится к области радиотехники и может быть использовано в системах радиопеленгации. Достигаемый технический результат – пространственное разрешение сигналов при уменьшении их уровней за счет уменьшения собственных шумов в каналах системы пеленгации. Указанный результат достигается тем, что устройство для определения направлений на источники радиоизлучений состоит из антенной решетки, имеющей К антенных элементов, коммутатора, контроллера, генератора, блока вычисления ковариационной матрицы, блока определения ковариационной матрицы с коррекцией шумовой составляющей, блока вычисления пространственного спектра, блока оценки направления на источники радиоизлучения и К каналов пеленгования, каждый из которых состоит из малошумящего усилителя, перемножителя, усилителя промежуточной частоты, аналого-цифрового преобразователя. Перечисленные средства определенным образом соединены между собой. 3 ил., 1 табл.

Изобретение относится к радиотехнике, а именно к методам и системам пассивной радиолокации, и предназначено для получения точных оценок местоположения заходящего на посадку летательного аппарата по излучаемому с его борта радиосигналу, и представляет собой комплекс радиоэлектронных средств, который содержит не менее двух узкобазовых подсистем, соединенных высокоскоростными линиями передачи информации с центральным пунктом обработки. Достигаемый технический результат – повышение точности оценки вектора координат, описывающего местоположение источника радиоизлучения. Указанный результат достигается за счет того, что узкобазовая подсистема оснащена активной фазированной многокольцевой антенной решеткой и осуществляет прием радиосигналов, их синхронную демодуляцию многоканальным квадратурным приемником и преобразование в цифровую форму посредством многоканального аналого-цифрового преобразователя, при этом центральный пункт обработки производит оценку местоположения источника излучения на основе совместной обработки всех принятых сигналов с использованием комбинированного одноэтапного алгоритма, состоящего в формировании решающей функции на основе метода максимального правдоподобия и ее последующей оптимизации и исключающего выполнение промежуточных вычислений временных и фазовых задержек и углов пеленга. 3 н.п. ф-лы, 8 ил.

Изобретение относится к области радиолокации и предназначено для определения местоположения работающей радиолокационной станции (РЛС), имеющей сканирующую направленную антенну. Достигаемый технический результат – расширение функциональных возможностей путем обеспечения определения направления на сканирующую РЛС и дальности до нее, при одновременном повышении достоверности результатов измерений. Указанный результат достигается за счет определения местоположения сканирующей РЛС пассивным многолучевым, по меньшей мере трехлучевым, пеленгатором, при котором измеряют период вращения антенны РЛС, определяют угол поворота антенны РЛС относительно направления на пеленгатор, при этом в каждом цикле зондирования при данном угле поворота антенны РЛС измеряют временные задержки Δτ21, Δτ31 сигналов, рассеянных отражающей поверхностью не менее, чем в двух лучах пеленгатора, при этом соответственно Δτ21 - задержка сигнала, принятого по второму лучу, относительно сигнала, принятого по первому лучу, Δτ31 - задержка сигнала, принятого по третьему лучу, относительно сигнала, принятого по первому лучу, затем на основании проведенных измерений расстояние RK от пеленгатора до цели, а также угол между направлением на РЛС и направлением первого луча пеленгатора вычисляют по соответствующим формулам. 5 ил.

Изобретение относится к радиотехнике, а именно к пассивным системам радиоконтроля, и, в частности, может быть использовано для высокоточного определения с помощью летательных аппаратов координат источников радиоизлучений (ИРИ), излучающих непрерывные или квазинепрерывные сигналы. Достигаемый технический результат - снижение аппаратурных затрат при реализации способа на базе изделий функциональной электроники, а при реализации способа на базе аппаратных средств цифровой обработки сигналов - повышение быстродействия за счет уменьшения количества арифметических операций. Указанный результат достигается за счет того, что способ определения координат ИРИ заключается в приеме сигналов ИРИ на трех летательных аппаратах, их ретрансляции на центральный пункт обработки и вычислении координат ИРИ по разностям радиальных скоростей, при этом дополнительно находятся доплеровские сдвиги частоты как аргумент максимизации амплитудного спектра произведения сигнала с одного ретранслятора на сигнал с другого ретранслятора, подвергнутый комплексному сопряжению и сдвигу на временную задержку, которая определяется как аргумент максимизации модуля функции взаимной корреляции преобразованных сигналов, полученных путем перемножения исходных сигналов на эти же сигналы, подвергнутые комплексному сопряжению и временному сдвигу на интервал T, превышающий величину, обратно пропорциональную удвоенной ширине спектра сигнала.

Изобретение относится к области радиотехники и может быть использовано в пассивных системах местоопределения (МО) источников радиоизлучения (ИРИ), размещенных на неровных участках местности. Достигаемый технический результат – снижение погрешности определения координат ИРИ. Сущность изобретения заключается в расположении четырех приемных пунктов (ПП), размещенных на беспилотных летательных аппаратах (БЛА) типа "мультикоптер" в районе предполагаемого нахождения ИРИ. В указанный район ПП доставляются посредством беспилотного или пилотируемого летательного аппарата среднего класса. В состав каждого ПП входят блок навигационно-временного обеспечения, ненаправленная антенна, панорамный приемник, приемопередатчик. В районе предполагаемого нахождения ИРИ приемные пункты распределяют в пространстве по команде с наземного пункта управления и обработки (НПУО), формируя, таким образом, разностно-дальномерную систему (РДС) МО. Приемные пункты располагают в вершинах тетраэдра: периферийные ПП в вершинах его нижнего основания, а опорный в вершине над основанием. В образованной РДС по сигналам блоков навигационно-временного обеспечения каждого ПП осуществляется определение их координат в пространстве, высокоточная привязка к собственной системе координат РДС и передача координатной информации о периферийных ПП на опорный. По команде с него все ПП выполняют поиск сигнала ИРИ в заданном частотном диапазоне и при обнаружении сигнала ретранслируют его на опорный. Прием и ретрансляция сигнала ИРИ приемными пунктами осуществляются их панорамными приемниками и приемопередатчиками соответственно. На опорном ПП на основе вычисления корреляции между сигналом, принятым на нем, и сигналами, ретранслированными с периферийных ПП, вычисляются и отправляются на НПУО координаты обнаруженного ИРИ. На НПУО оценивается значение погрешности полученных координат и в случае превышения требуемого значения, установленного оператором, осуществляется пересчет собственных координат всех ПП для их перестроения. Такое перестроение ПП относительно ИРИ выполняется до тех пор, пока погрешность определения его координат не установится ниже требуемого значения. 8 ил.

Изобретение относится к радиотехнике и предназначено для повышения точности определения местоположения мобильных средств по сигналам опорных станций наземной локальной радионавигационной системы (ЛРНС). Достигаемый технический результат – повышение точности определения местоположения мобильного средства (МС). Указанный результат достигается за счет того, что способ пространственной селекции расстояний при решении задачи позиционирования МС дальномерным методом в наземной ЛРНС включает измерение расстояний ri (i=1, 2, …, n) от МС с неизвестными координатами до опорных станций ЛРНС с известными координатами Pi, i=1, 2, …, n, фильтрацию измеренных расстояний в медианных фильтрах, вычисление погрешностей между исходными расстояниями и их оценкой после фильтрации с последующей передачей полученных погрешностей в блок управления селекцией для вычисления наибольшей погрешности и формирования команды управления ключом на отключение данной линии, предотвращающее передачу оценок расстояний с наибольшими погрешностями в блок расчета координат МС. 6 ил.
Наверх