Фармацевтический ниосомальный гель на основе вещества n-гидрокси-2-(2-(нафтален-2-ил)-1h-индол-3-ил)-2-фенилацетамид с противоопухолевой активностью к глиобластоме

Изобретение относится к медицине, в частности к композиции для лечения злокачественной опухоли мозга - глиобластомы. Композиция представляет собой ниосомальный гель, содержащий инкапсулированное в ниосомы синтезированное вещество N-гидрокси-2-(2-(нафтален-2-ил)-1H-индол-3-ил)-2-фенилацетамид. Осуществление изобретения позволяет повысить эффективность транспорта противоопухолевого вещества в клетки мишени, что позволяет повысить терапевтическое действие ниосомального геля для лечения глиобластомы. 1 табл., 2 ил.

 

Ограничением для терапевтического использования противоопухолевых веществ является их токсичность по отношению к здоровым тканям. Эффективным способом ее снижения считается использование противоопухолевых веществ не в свободной форме, а в составе лекарственных композиций с переносчиком (транспортная система), влияющих на биораспределение лекарства в организме.

Широкое применение на сегодняшнее время находят такие формы противоопухолевых веществ, которые обеспечивают сохранение или увеличение терапевтического противоопухолевого действия при снижении побочных эффектов. Наиболее распространенные системы доставки - липосомальные формы, основанные на фосфолипидах. Преимущества липосомальной формы в настоящее время связаны в первую очередь с улучшенной фармакокинетикой и снижением побочных эффектов. Известен липосомальный препарат доксорубицина, основанный на включении доксорубицина в состав фосфолипидных наночастиц (НФ-доксорубицин), что снижает процент лекарства, связанного с форменными элементами крови (Патент РФ №2411935).

Наиболее близким к заявляемому изобретению является лечение глиобластомы при использовании липидных наноконтейнеров для доставки противоопухолевых веществ. Израильские ученые сообщили об эксперименте по лечению глиобластомы у лабораторных мышей с помощью наночастиц, доставляющих к опухоли малые интерферирующие РНК. Такие молекулы способны блокировать производство белков злокачественными клетками (Zvi R. Cohen, Srinivas Ramishetti, Naama Peshes-Yaloz, Meir Goldsmith, Anton Wohl, Zion Zibly, Dan Peer. Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based Nanoparticles / Jornal ACS Nano, 2015, 9 (2), pp 1581-1591). Однако использование нанопереносчиков, основанных на гиалуроновой кислоте и липидах, имеет свои недостатки, они быстро разрушаются, так как они являются субстратом для перикисного окисления липидов (ПОЛ). В результате чего образуются высокореактивные альдегидные продукты ПОЛ, что приводит к нарушению метаболизма клетки. Кроме того, крупные липидные частицы взаимодействуют с макрофагами организма, что ускоряет развитие лекарственной устойчивости.

Таким образом, каждая из имеющихся на рынке липосомальных форм противоопухолевых препаратов обладает определенными недостатками: низкая стабильность, высокая себестоимость, быстрое выведение липосом из крови, которое связано с поглощением их ретикуло-эндотелиальной системой (РЭС) печени и селезенки, чему способствует их относительно большой размер - выше 150 нм, в сочетании с незащищенной поверхностью.

Целью предлагаемого изобретения является создание такой формы, которая увеличивала бы время ее циркуляции в кровяном русле в несколько раз. С учетом того, что в зоне пораженной опухолью ткани кожи имеют быть место ишемические процессы, особенно необходима трансдермальная пролонгированная доставка лекарственного препарата. Эта задача решается за счет инкапсулирования синтезированного вещества N-гидрокси-2-(2-(нафтален-2-ил)-1H-индол-3-ил)-2-фенилацетамид в кремнийорганические нановезикулы - ниосомы, имеющие размер до 100 нанометров. По отношению к прототипу заявляемое изобретение отличает то, что в отличие от липосом ниосомы обладают рядом преимуществ. В частности, ниосомы кремнийорганической природы, являясь неионогенным поверхностно-активным веществом, обладают большей проникающей способностью, чем липосомы. Они структурно сходны с липосомами в наличии бислоя, однако кремнийорганические компоненты, используемые для приготовления ниосом сделали их более стабильными. Молекулы ниосом, как правило, ориентируются таким образом, что гидрофильные концы неионогенного поверхностно-активного вещества направлены наружу, а гидрофобные концы обращены друг к другу, чтобы сформировать бислой. Ниосомы являются осмотически активными, их химическая стабильность обусловила более длительный срок хранения по сравнению с липосомами. Они могут повысить терапевтическую эффективность молекул лекарственного вещества, защищая препарат от клеток ретикуло-эндотелиальной системы, так как их размер менее 100 нанометров делает их невидимыми для этих клеток. Это улучшает доступность ниосом к клеткам-мишеням и возможность контролируемой доставки лекарственных средств. Таким образом, их главное достоинство, как целевых носителей, заключается в длительной циркуляции в кровотоке и, как следствие, пролонгированной доставке в ниосомах противоопухолевого синтезированного вещества N-гидрокси-2-(2-(нафтален-2-ил)-1H-индол-3-ил)-2-фенилацетамид.

Сущность изобретения

Конструирование предлагаемого лекарственного геля заключается в иммобилизации синтезированного противоопухолевого вещества N-гидрокси-2-(2-(нафтален-2-ил)-1H-индол-3-ил)-2-фенилацетамид в кремнийорганические везикулы - ниосомы, обладающие высокой трансдермальной проникающей способностью. Данная рецептура позволяет плавно наращивать терапевтическую дозу и повысить эффективность препарата за счет депонирования препарата. Встраивание синтезированного противоопухолевого вещества в кремнийорганические наноструктуры - ниосомы, обладающие значительной липофильностью, позволяет ему не попадать в здоровые ткани, проникая лишь через дефектные капилляры глиобластомы. Трансдермальный путь введения позволяет снизить токсический эффект препарата.

Предлагаемое противоопухолевое средство представляет собой стабильный, однородный гель для наружного применения.

Осуществление изобретения

В качестве поверхностно активного соединения для формирования ниосом использовали ПЭГ-12 диметикон. Предварительно взвешивали 40 мг кристаллообразного вещества N-гидрокси-2-(2-(нафтален-2-ил)-1H-индол-3-ил)-2-фенилацетамид и растворяли в 1 мл этилового спирта. Затем готовили молярные концентрации компонентов противопухолевого препарата. Первоначально добавляли 1,2-пропиленгликоль и готовили раствор вещества в концентрации 1 мМ (миллимоль/литр пропиленгликоля). Для иммобилизации в ниосомы противоопухолевого вещества использовали ультразвук. Дисперсию ниосом и противопухолевое вещество N-гидрокси-2-(2-(нафтален-2-ил)-1H-индол-3-ил)-2-фенилацетамид в 1,2-пропиленгликоле помещали в сосуд для ультразвуковой обработки. Режим озвучивания: частота - 20 кГц, мощность - 200 Вт, экспозиция - 10 минут. При этом образовывались монола-меллярные ниосомы с включенным иммобилизируемым противоопухолевым средством размером менее 100 Нм. Инкапсулировали противоопухолевое вещество в ниосомы и получали опытные образцы препарата с концентрацией в 1, 5 и 10 мкМ (микромоль/литр ниосом).

Затем эмульсию ниосом эмульгировали с очищенной водой до 1000 мл, содержащей 50 мл гелеобразователя. В заключительной стадии для формирования «пространственной сетки» полимера добавляли 20 мл триэтаноламина.

Количественный состав противопухолевого ниосомального геля:

N-гидрокси-2-(2-(нафтален-2-ил)-1H-индол-3-ил)-2-фенилацетамид 4 мг
ПЭГ-12 диметикон (ниосомы) 100 мл
Гелеобразователь 50 мл
Триэтаноламин 20 мл
Вода очищенная до 1000,0 мл

Установлена способность проотивоопухолевого вещества N-гидрокси-2-(2-(нафтален-2-ил)-1H-индол-3-ил)-2-фенилацетамид к флуоресценции при длине волн возбуждения и эмиссии, которые составили Еех=322 нм и Ееm=422 нм. Исследовали несколько опытных образцов препарата с содержанием в ниосомах количества противоопухолевого вещества, равного 1, 5 и 10 мкМ (микромоль).

При повышении концентрации этого вещества в ниосомах наблюдалось увеличение интенсивности флуоресценции (рис. 1). На основании полученных результатов построили калибровочную кривую для изучения степени включения противоопухолевого вещества в ниосомы. Эффективность включения вещества в ниосомы определяли по формуле:

ЭВ=С ниос/С общ×100,

где ЭВ - эффективность включения, С ниос - концентрация препарата в ниосомах, С общ - общая концентрация препарата в растворе, мкМ.

В результате установлено, что эффективность включения противоопухолевого вещества в ниосомы составляла более 80% и зависит от концентрации вносимого вещества (табл. 1).

Изучение механизмов проникновения противоопухолевого вещества в живые клетки, т.е. взаимодействие этих соединений с клеточными мембранами, является очень важным при исследовании эффективности биологического действия in vivo. С целью сравнительного изучения механизмов повышения эффективности переноса противоопухолевого вещества в ниосомальной и липосомальной формах проводили измерение микровязкости мембран. Для этого использовали метод латеральной диффузии гидрофобного флуоресцентного зонда пирена. Определение микровязкости было основано на образовании эксимеров (активных димеров) пирена в липидном окружении. Флуоресценцию пирена измеряли спектрофлуорометрически на спектрофлуориметре RF-5301PC (Шимадзу, Япония) при длине волны возбуждения 334 нм, длина волны мономеров - 395 нм, длина волны эксимеров - 470 нм.

Взаимодействие ниосомальной формы противоопухолевого вещества изменяло структурное состояние мембран (увеличением текучести липидного компонента в целом и в особенности в области белок-липидных контактов; возрастанием полярности окружения молекул пирена). Так, реакция образования эксимера пирена лимитируется скоростью диффузии в области жирнокислотных цепей липидов, что позволяет исследовать текучесть мембран по отношению 1 эк/1 м, которое зависит от гидрофобного объема, доступного для пирена, а также от подвижности углеводородных цепей липидов. В нашем случае увеличение флуоресценции эксимерной формы свидетельствует, что ниосомы обладают более низкой микровязкостью по сравнению с липосомами, образованными фосфолипидами. Наличие кремний органических полимеров в составе ниосом делает их более стабильными и осмотически активными по сравнению с липосомами (рис. 2).

При увеличении текучести мембрана становится более проницаемой для воды и других малых гидрофильных молекул, растет скорость латеральной диффузии интегральных белков. Если активный центр интегрального белка, осуществляющий некую функцию, располагается исключительно в гидрофильной его части, то изменение текучести липидов, вероятно, не скажется слишком сильно на активности белка. Но если белок выполняет транспортную функцию и транспортный компонент пересекает мембрану, то изменения свойств липидной фазы могут привести к значительному изменению скорости транспорта веществ через мембраны. В нашем случае показанные выше фенотипические особенности воздействия на раковые клетки 2-арил-2-(3-индолил) ацетогидроксамовых кислот могут быть связаны с такими не апоптотическими типами гибели клеток, как некроз, аутофагия, параптоз, метуозис. Это необходимо учитывать в качестве альтернативной стратегии борьбы с опухолями, резистентными к апоптозу.

Эксперимент показал, что инкапсулирование противоопухолевого вещества в ниосомы составило не менее 80%. Встраивание ниосом в клеточные мембраны повышает эффективность транспорта противоопухолевого вещества N-гидрокси-2-(2-(нафтален-2-ил)-1H-индол-3-ил)-2-фенилацетамид в клетки мишени, что позволит повысить терапевтическое действие ниосомального геля для лечения глиобластомы.

Фармацевтический ниосомальный гель на основе вещества N-гидрокси-2-(2-(нафтален-2-ил)-1H-индол-3-ил)-2-фенилацетамид с противоопухолевой активностью к глиобластоме, содержащий:

N-гидрокси-2-(2-(нафтален-2-ил)-1H-индол-3-ил)-2-фенилацетамид 4 мг
ПЭГ-12 диметикон - ниосомы 100 мл
Гелеобразователь 50 мл
Триэтаноламин 20 мл
Вода очищенная до 1000,0 мл



 

Похожие патенты:

Изобретение относится к способу изготовления кристаллической формы хлорида (2R,S)-, (2S)- или (2R)-DOTAP (N,N,N-триметил-2,3-бис[[(9Z)-1-оксо-9-октадеценил]окси]-1-пропанаминийхлорид).
Изобретение относится к области биохимии, биотехнологии, биоаналитики и касается способа получения иммобилизованных бислойных везикул. Обрабатывают носитель, содержащий ковалентно связанный полимер и поверхностный отрицательный заряд, суспензией катионных бислойных везикул в водосодержащей среде.

Изобретение относится к новым офтальмологическим композициям, в частности к офтальмологической композиции, содержащей соединение формулы (I), где значения для групп R1 и R2 приведены в формуле изобретения, и офтальмологически приемлемый носитель.

Изобретение относится к области медицины, а именно к фармации, и касается разработки средства в форме медицинских капсул с липосомами, обладающего противотуберкулезной активностью.

Изобретение относится к медицине, а именно к акушерству, гинекологии и репродуктологии, и может быть использовано при лечении нарушений репродуктивной функции, связанных с хроническим эндометритом с аутоиммунными нарушениями, в том числе у пациенток с осложненным гинекологическим анамнезом.

Изобретение относится к области биотехнологии и позволяет получать наноконтейнеры для различного рода веществ в косметологии, фармакологии, медицине. Изобретение представляет собой способ получения липосом и характеризуется тем, что 1%-ный раствор лецитина в этиловом спирте испаряли в роторном испарителе IKA RV10 control при температуре водяной бани 60°С, в результате на стенке испарительной колбы получали пленку липидов, далее добавляли сантимолярный натрий-фосфатный буфер pH 7,4 в объеме, равном объему раствора лецитина в этиловом спирте, перемешивали в течение 1 минуты, далее полученный раствор подвергали воздействию ультразвуком в течение 15 минут, за счет чего на выходе получали монодисперсную гомогенную систему с размером частиц 59,9-106,2 нм.
Изобретение относится к фармацевтической промышленности и медицине и представляет собой липосомный состав для купирования воспалительных заболеваний суставов, содержащий дипальмитоилфосфатидилхолин, холестерин, гидрокортизон-ацетат, преднизолона гемисукцинат и физиологический раствор, причем компоненты состава находятся в определенном соотношении, в г.

Изобретение относится к области медицины, а именно к липосомальной композиции для использования в перитонеальном диализе у пациентов, страдающих эндогенной или экзогенной интоксикацией, где значение рН внутри липосом отличается от значения рН в перитонеальной полости и составляет предпочтительно 1,5-4,0 или 9,0-10,0, и где значение рН внутри липосомы приводит к образованию заряженного токсина, включенного в липосому.

Изобретение относится к области фармацевтики и касается композиции иммуномодулятора для лечения респираторного заболевания у крупного рогатого скота, которое вызвано Mannheimia haemolytica, которая включает катионное липосомное средство и молекулу нуклеиновой кислоты, где молекула нуклеиновой кислоты является выделенным, происходящим из бактерии E.coli некодирующим ДНК плазмидным вектором, содержащим 4242 пар оснований, без встроенного гена.

Группа изобретений относится к медицине, химико-фармацевтической и косметической промышленности, а именно к способу получения липосомальной формы убихинола (восстановленный коэнзим Q10), включающему приготовление раствора, содержащего смесь фосфолипида и стерина при их массовом соотношении 1:0,1-2 соответственно, убихинол при массовом соотношении убихинола к смеси фосфолипида и стерина равном 1:1-4 соответственно и сорастворитель, в качестве которого используют неионогенное поверхностно-активное вещество, в этаноле, диспергирование полученного раствора, содержащего липидную фракцию, в водной среде, содержащей криопротектор, до получения суспензии липидных везикул с включенным в них убихинолом, гомогенизацию суспензии липидных везикул и отделение липосом размером не более 220 нм с включенным в них убихинолом, а также к липосомальной фармацевтической и косметической композициям, включающим липосомальную форму убихинола, полученную указанным способом.

Изобретение относится к новым офтальмологическим композициям, в частности к офтальмологической композиции, содержащей соединение формулы (I), где значения для групп R1 и R2 приведены в формуле изобретения, и офтальмологически приемлемый носитель.

Изобретения относятся к химико-фармацевтической промышленности и представляют собой фармацевтическую композицию с противогрибковой активностью в виде таблеток или капсул и способ ее получения.

Изобретение относится к способу получения блок-сополимера, который может быть использован для получения противоракового лекарственного средства. Блок-сополимер имеет следующую формулу (1): ,где R1 представляет собой атом водорода или (С1-С5)алкильную группу; R2 представляет собой (С1-С5)алкиленовую группу; R3 представляет собой метиленовую или этиленовую группу; R4 представляет собой атом водорода или (С1-С4)ацильную группу; R5 представляет собой гидроксильную группу, арил(С1-С8)алкоксигруппу, которая может иметь заместитель, или -N(R6)-CO-NHR7, где R6 и R7 могут быть одинаковыми или различными, и каждый представляет собой циклическую (С3-С6)алкильную группу или (С1-С5)алкильную группу, которая может быть замещена третичной аминогруппой; n составляет 20-500; m составляет 2-200; а составляет 0-100; b составляет 0-100, при условии, что сумма а и b составляет больше чем или равна 1 и не больше чем m; доля группы R5, представляющей собой гидроксильную группу, составляет 0-5 % от m; доля группы R5, представляющей собой арил(С1-С8)алкоксигруппу, которая может иметь заместитель, составляет 10-80 % от m; доля группы R5, представляющей собой -N(R6)-CO-NHR7, составляет 11-30 % от m.
Изобретение относится к медицине. Описана твердая фармацевтическая дозированная форма для высвобождения никотина в ротовой полости, содержащая ядро, инкапсулированное по меньшей мере в одно пленочное покрытие, причем ядро содержит никотин, причем пленочное покрытие содержит по меньшей мере один пленкообразующий полимер и по меньшей мере один компонент для уменьшения одного или более органолептически неприятных ощущений, причем по меньшей мере одно пленочное покрытие не содержит никотин и буферный раствор.

Изобретение относится к фармацевтической композиции для перорального введения, содержащей ядро, включающее гидрокортизон и носитель, и слой полимера отсроченного высвобождения, находящийся в контакте с указанным ядром.

Изобретение относится к области химико-фармацевтической промышленности. Фармацевтическая композиция для лечения ВИЧ-инфекции включает лопинавир, ритонавир в эффективном количестве и полимер.

Изобретение относится к фармацевтической композиции, подходящей для парентерального введения, содержащей противогрибковое азольное фармацевтическое средство – итраконазол или позаконазол, и растворитель, при этом указанный растворитель содержит а) спиртовой компонент, выбранный из бензилового спирта и/или подкисленного этанола, и b) полиэтиленгликоль (ПЭГ), при этом азольное средство растворяют в указанном растворителе, причем композиция по существу не содержит неионогенных поверхностно-активных веществ и содержит менее 5% воды.

Группа изобретений относится к области химико-фармацевтической промышленности, а именно к эмульсии для микрокапсулирования, содержащей внешнюю непрерывную фазу первой жидкости и внутреннюю дисперсную фазу второй жидкости, которая по меньшей мере частично не смешивается с первой жидкостью; где эмульсия дополнительно содержит: (а) сополимер полилактид-полиэтиленгликоль в качестве биоразлагаемого поверхностно-активного блок-сополимера, (б) сополимер полилактид-гликолид (50:50) в качестве биоразлагаемого инкапсулирующего полимера, (в) гозерелин ацетат в качестве биологически активного агента, в которой поверхностно-активный блок-сополимер, по меньшей мере, частично растворим в воде и смешивается с другими компонентами эмульсии в виде водного раствора, а также к микрочастице для высвобождения гозерелин ацетата, полученной из указанной эмульсии.

Группа изобретений относится к медицине. Описана жидкотекучая композиция для подкожных инъекций, включающая бупренорфин в форме свободного основания или фармацевтически приемлемой соли, биоразрушаемый термопластичный поли(DL-лактид-со-гликолид) и N-метил-2-пирролидон в качестве биосовместимой полярной апротонной жидкости.

Изобретение относится к способу изготовления фармацевтической лекарственной формы, содержащей кальциевую соль розувастатина. Фармацевтическая лекарственная форма содержит ядро таблетки, покрытое посредством распыления подслоем формирующего покрытие полимера.

Изобретение относится к способу изготовления кристаллической формы хлорида (2R,S)-, (2S)- или (2R)-DOTAP (N,N,N-триметил-2,3-бис[[(9Z)-1-оксо-9-октадеценил]окси]-1-пропанаминийхлорид).
Наверх