Способ заготовки ультратонких донорских роговичных трансплантатов для задней послойной кератопластики методом последовательного применения автоматического микрокератома и эксимерного лазера


A61F9/00 - Способы и устройства для лечения глаз; приспособления для вставки контактных линз; устройства для исправления косоглазия; приспособления для вождения слепых; защитные устройства для глаз, носимые на теле или в руке (шапки, кепки с приспособлениями для защиты глаз A42B 1/06; смотровые стекла для шлемов A42B 3/22; приспособления для облегчения хождения больных A61H 3/00; ванночки для промывки глаз A61H 33/04; солнцезащитные и другие защитные очки с оптическими свойствами G02C)

Владельцы патента RU 2629211:

Федеральное государственное автономное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации (RU)

Изобретение относится к медицине, а более конкретно к офтальмологии, и предназначено для формирования ультратонкого роговичного диска (трансплантата) для задней послойной кератопластики. На первом этапе донорская роговица, законсервированная в среде Борзенка-Мороз, монтируется на искусственную переднюю камеру. Выполняют ультразвуковую или ОКТ пахиметрию (как правило, толщина в центре 750-900 мкм). Выполняют первый срез микрокератомом Moria SLK 2 с турбиной продольного типа головкой калибра 450-500-550 мкм. Далее выполняют повторную ультразвуковую или ОКТ пахиметрию. Вторым этапом при помощи эксимерлазерной офтальмологической установки Микроскан Визум (Оптосистемы, Троицк) выполняют абляцию плоским лучом на глубину, необходимую для получения ультратонкого трансплантата (остаточная толщина в центре трансплантата 120-140 мкм). Длина волны эксимерлазера 193 нм, частота следования импульсов 500 Гц, диаметр лазерного пятна 0,9 мм, максимальный диаметр абляции 9,0 мм, глубина абляции, как правило, не превышает 100 мкм (30-100 мкм). Из полученной заготовки пробойником нужного диаметра (8-8,5 мм) выкраивают искомый трансплантат для ЗАПК. Результатом применения данной технологии является предсказуемое получение трансплантата заданной толщины без риска перфорации донорской роговицы и ее выбраковки. Полученная толщина трансплантата в гидратированном виде в центральной зоне не превышает 140 мкм. После дегидратации трансплантата в глазу реципиента (как правило, не менее 30%) его толщина, соответственно, не превышает 100 мкм. 2 пр.

 

Изобретение относится к медицине, а более конкретно к офтальмологии, и предназначено для формирования ультратонкого роговичного диска (трансплантата) для задней послойной кератопластики.

Задняя автоматизированная послойная кератопластика (ЗАПК) - «золотой стандарт» лечения ЭЭД, однако наиболее высокие зрительные функции можно получить лишь при использовании так называемого ультратонкого трансплантата, характеризующегося центральной толщиной, не превышающей 100 мкм. Изготовление трансплантата такого рода общепринятым методом - с помощью механического микрокератома - сопряжено с большим количеством технических сложностей, вследствие чего эффективность данной процедуры, как правило, не превышает 50%. В остальных случаях трансплантат получается более толстым, что отрицательно сказывается на зрительных функциях пациента, либо происходит перфорация и роговица выбраковывается, что совершенно не допустимо в современных условиях дефицита донорского материала.

Заготовка трансплантата при помощи микрокератома, как правило, подразумевает выполнение двух срезов (Малюгин Б.Э., Мороз З.И., Борзенок С.А., Дроздов И.В., Айба Э.Э., Паштаев А.Н. Первый опыт и клинические результаты задней автоматизированной послойной кератопластики (ЗАПК) с использованием предварительно выкроенных консервированных ультратонких роговичных трансплантатов // Офтальмохирургия. - 2013. - №3. - С. 12-16; Малюгин Б.Э., Мороз З.К., Ковшун Е.В., Дроздов И.В. Задняя автоматизированная послойная кератопластика с использованием ультратонких трансплантатов // Съезд офтальмологов России, 9. - Тез. докл. - М., 2010. - С. 310). После выполнения первого проводится ультразвуковая или лазерная пахиметрия остаточной ткани и производится выбор головки. Однако роговица после проведенного среза вследствие малой толщины имеет биомеханику и геометрию, отличную от стандартной. Это приводит к ее избыточной эктазии, в результате чего прогнозируемость второго среза по толщине является очень низкой, что примерно в 20% случаев приводит к перфорации и выбраковке донорского материала, а в 30% к получению «толстого» трансплантата вследствие «перестраховки» и выбора головки неоптимального калибра.

Альтернативой проведению второго среза с помощью микрокератома может являться фотоабляция избыточной ткани с помощью эксимерного лазера. Эксимерные лазеры давно и активно применяются в офтальмохирургии для проведения кераторефракционных операций, а также для испарения роговицы при поверхностных ее помутнениях (фототерапевтическая кератэктомия), однако упоминаний об их сочетанном применении с механическим микрокератомом для заготовки трансплантатов для ЗАПК нами в литературе не встречено. Методика безопасна для эндотелия, а кератом и эксимерлазер давно и успешно применяются в офтальмохирургии.

Задачей изобретения является разработка безопасного, прогнозируемого и эффективного способа формирования ультратонких донорских роговичных трансплантатов с целью повышения качества заготавливаемого роговичного диска и улучшения клинико-функциональных результатов задней послойной кератопластики.

Результатом применения данной технологии является предсказуемое получение трансплантата заданной толщины без риска перфорации донорской роговицы и ее выбраковки. Полученная толщина трансплантата в гидратированном виде в центральной зоне не превышает 140 мкм. После дегидратации трансплантата в глазу реципиента (как правило, не менее 30%) его толщина, соответственно, не превышает 100 мкм.

Технический результат достигается тем, что на первом этапе под контролем ультразвуковой или ОКТ пахиметрии выполняют срез микрокератомом, затем проводят повторную ультразвуковую пахиметрию или пахиметрию на оптическом когерентном томографе, после которой при помощи эксимерлазерной офтальмологической установки выполняют абляцию плоским лучом диаметром 9,00 мм на глубину с расчетом получения остаточной толщины роговицы в центральной зоне 120-140 мкм.

Таким образом, предложенная технология заключается в следующем.

На первом этапе донорская роговица, законсервированная в среде Борзенка-Мороз, монтируется на искусственную переднюю камеру. Выполняют ультразвуковую или ОКТ пахиметрию (как правило, толщина в центре 750-900 мкм). Выполняют первый срез микрокератомом Moria SLK 2 с турбиной продольного типа головкой калибра 450-500-550 мкм. Далее выполняют повторную ультразвуковую или ОКТ пахиметрию. Вторым этапом при помощи эксимерлазерной офтальмологической установки Микроскан Визум (Оптосистемы, Троицк) выполняют абляцию плоским лучом на глубину, необходимую для получения ультратонкого трансплантата (остаточная толщина в центре трансплантата 120-140 мкм). Длина волны эксимерлазера 193 нм, частота следования импульсов 500 Гц, диаметр лазерного пятна 0,9 мм, максимальный диаметр абляции 9,0 мм, глубина абляции, как правило, не превышает 100 мкм (30-100 мкм). Из полученной заготовки пробойником нужного диаметра (8-8,5 мм) выкраивают искомый трансплантат для ЗАПК.

Техника операции стандартна. Донорскую роговицу, законсервированную в среде Борзенка-Мороз, монтируют на искусственную переднюю камеру. Выполняют ультразвуковую или ОКТ пахиметрию. Выполняют первый срез микрокератомом Moria SLK 2 с турбиной продольного типа головкой калибра 450-500-550 мкм. Далее выполняют повторную ультразвуковую или ОКТ пахиметрию. С учетом полученной толщины трансплантата при помощи эксимерлазерной офтальмологической установки Микроскан Визум (Оптосистемы, Троицк) выполняют абляцию плоским лучом. Длина волны эксимерлазера 193 нм, частота следования импульсов 500 Гц, диаметр лазерного пятна 0,9 мм, максимальный диаметр абляции 9,0 мм, глубина абляции рассчитывается таким образом, чтобы остаточная толщина роговицы в центральной зоне составляла 120-140 мкм. Далее из полученной заготовки пробойником нужного диаметра (8-8,5 мм) выкраивают трансплантат для ЗАПК. Следующим этапом на роговице реципиента с височной стороны выполняют туннельный разрез длиной 1,5 мм и шириной 4,5 мм, с носовой стороны - парацентез. При помощи крючка выполняют десцеметорексис диаметром 8,0-8,5 мм. Затем трансплантат помещают в воронку глайда по Бузину эндотелием кверху. Наконечник глайда вводится в переднюю камеру через туннельный роговичный разрез. При помощи пинцета с зубчатыми кончиками, введенного через парацентез роговицы с носовой стороны, трансплантат выводится в переднюю камеру реципиента. Под трансплантат вводится воздух для лучшей адгезии к ложу реципиента, затем выполняют центрацию трансплантата в ложе. Накладывают узловой шов нейлоном 10-0 на туннельный разрез роговицы.

Предлагаемый способ поясняется следующими клиническими примерами.

Пример 1. Пациент М., 69 лет, с диагнозом: дистофия роговицы Фукса правого глаза, осложненная катаракта. Острота зрения 0,04 sph -2,5 D = 0,1. Кератометрия ах 1610 42,50D ах 710 42,25D. Пахиметрия по центру 639 мкм. По данным Confoscan 4 эндотелий измененной формы подсчет клеток не удается. На первом этапе операции из донорской роговицы с ПЭК 2700 кл/мм2 получен трансплантат для выполнения ЗАПК. Для этого сначала выполнили ОКТ пахиметрию. Толщина роговицы в центральной зоне составила 761 мкм. Выполнили первый срез микрокератомом Moria SLK 2 с турбиной продольного типа головкой калибра 550 мкм. Далее выполнена повторная ОКТ пахиметрия. Толщина полученной донорской роговицы в центре составила 204 мкм. С учетом полученной толщины трансплантата при помощи эксимерлазерной офтальмологической установки Микроскан Визум (Оптосистемы, Троицк) выполняют абляцию плоским лучом. Длина волны эксимерлазера 193 нм, частота следования импульсов 500 Гц, диаметр лазерного пятна 0,9 мм, максимальный диаметр абляции 9,0 мм, глубина абляции 90 мкм. Далее из полученной заготовки пробойником диаметра 8,5 мм выкроен трансплантат для ЗАПК. Пациенту под местной анестезией и внутривенным наркозом пациенту на первом этапе выполнили факоэмульсификацию катаракты по стандартной методике, имплантировали интраокулярную линзу. Затем через парацентез роговицы выполнили десцеметорексис диаметром 8,5 мм. Трансплантат переместили в воронку глайда по Бузину эндотелием кверху. Затем глайд перевернули, его наконечник ввели в переднюю камеру через туннельный роговичный разрез в височной области длиной 1,5 мм и шириной 4,5 мм. При помощи пинцета с зубчатыми кончиками, введенного через парацентез роговицы с носовой стороны, трансплантат ввели в переднюю камеру. Под трансплантат введен воздух для лучшей адгезии к ложу реципиента, затем трансплантат центрирован в ложе. На следующий день после операции трансплантат прозрачный, в передней камере 1/3 пузырь воздуха, адгезия полная. Острота зрения 0,1 н/к. Кератометрия ах 1360 42,25D ах 460 41,75D. На пятый день при выписке трансплантат прозрачный, зрение глаза 0,3 н/к, пахиметрия в центре роговицы 634 мкм, на ОСТ профиль просматривается четко, толщина трансплантата в центральной зоне - 116 мкм. ПЭК - 2206. Через 3 месяца зрение 0,8 н/к, трансплантат прозрачный, кератометрия ах 1420 42,25D ах 520 42,00D. ПЭК - 2099. Через год трансплантата прозрачный, зрение 0,8 н/к. ПЭК - 2007, минимальная толщина трансплантата в центральной зоне - 96 мкм.

Пример 2. Пацинет К., 65 лет, с диагнозом: эпителиально-эндотелиальная дистрофия роговицы правого глаза, артифакия. Острота зрения 0,05 sph -1,75 D cyl -1,0D ах 83°=0,15. Кератометрия ах 1710 47,25D ах 810 44,25D. Пахиметрия по центру 705 мкм. По данным эндотелиальной микроскопии ПЭК не определяется, по данным Confoscan 4 эндотелий измененной формы подсчет клеток не удается. На первом этапе операции из донорской роговицы с ПЭК 2850 кл/мм2 получили трансплантат для выполнения ЗАПК. Для этого сначала выполнили ОКТ пахиметрию. Толщина роговицы в центральной зоне составила 695 мкм. Выполнили первый срез микрокератомом Moria SLK 2 с турбиной продольного типа головкой калибра 500 мкм. Далее выполнили повторную ОКТ пахиметрию. Толщина полученной донорской роговицы в центре составила 191 мкм. С учетом полученной толщины трансплантата при помощи эксимерлазерной офтальмологической установки Микроскан Визум (Оптосистемы, Троицк) выполнили абляцию плоским лучом. Длина волны эксимерлазера 193 нм, частота следования импульсов 500 Гц, диаметр лазерного пятна 0,9 мм, максимальный диаметр абляции 9,0 мм, глубина абляции 60 мкм. Далее из полученной заготовки пробойником диаметром 8,0 мм выкроили трансплантат для ЗАПК. Пациенту под местной анестезией и внутривенным наркозом через парацентез роговицы выполнили десцеметорексис диаметром 8,0 мм. Трансплантат переместили в воронку глайда по Бузину эндотелием кверху. Затем глайд перевернули, его наконечник ввели в переднюю камеру через туннельный роговичный разрез в височной области длиной 1,5 мм и шириной 4,5 мм. При помощи пинцета с зубчатыми кончиками, введенного через парацентез роговицы с носовой стороны, трансплантат ввели в переднюю камеру. Под трансплантат ввели воздух для лучшей адгезии к ложу реципиента, затем трансплантат центрировали в ложе. На следующий день после операции трансплантат прозрачный, адаптация полная, в передней камере 1/2 пузырь воздуха. Острота зрения 0,1 н/к. Кератометрия ах 1450 46,75D ах 550 42,25D. На пятый день при выписке трансплантат прозрачный, зрение 0,4 sph -1,0 D cyl -1,0D ах 150° = 0,5, пахиметрия в центре роговицы 600 мкм, на ОСТ профиль просматривается четко, толщина трансплантата в центральной зоне - 121 мкм. ПЭК - 2221. Через 6 месяцев зрение 0,4 sph -1,5D cyl -0,5 D ax 143° = 0,7, кератометрия ax 1430 44,25D ax 530 42,75D трансплантат прозрачный. ПЭК - 2123. Через год трансплантат прозрачный, зрение 0,5 sph -1,5D cyl -1,0 D ax 138° = 0,8. ПЭК - 1998, минимальная толщина трансплантата в центральной зоне - 92 мкм.

Во всех случаях достигнуты прозрачное приживление трансплантата, достигнута высокая острота зрения.

Способ заготовки ультратонких донорских роговичных трансплантатов для задней послойной кератопластики методом последовательного применения автоматического микрокератома и эксимерного лазера обеспечивает:

- безопасность заготовки трансплантата с исключением риска перфорации и выбраковки донорской роговицы,

- получение трансплантата, который после дегидратации в глазу реципиента полностью соответствует требованиям, предъявляемым к ультратонким трансплантатам,

- хорошую адаптацию трансплантата в глазу реципиента, прозрачное приживление и высокую остроту зрения.

Способ заготовки ультратонких донорских роговичных трансплантатов для задней послойной кератопластики, заключающийся в двухэтапном изготовлении трансплантата, на первом из которых под контролем пахиметрии при помощи микрокератома формируется срез с передней поверхности роговицы толщиной 450-500-550 мкм, отличающийся тем, что на втором этапе после выполнения повторной ультразвуковой или ОКТ пахиметрии выполняют абляцию эксимерлазером с длиной волны 193 нм, частотой следования импульсов 500 Гц, диаметром лазерного пятна 0,9 мм выполняют абляцию плоским лучом диаметром 9,00 мм на глубину с расчетом получения остаточной толщины роговицы в центральной зоне 120-140 мкм.



 

Похожие патенты:
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано в лазерном лечении диабетического макулярного отека. Осуществляют наложение тестовых коагулятов вне зоны макулярного отека.

Изобретение относится к области медицины, в частности к офтальмологии, и предназначено для хирургического лечения отслоек сетчатки с повышенным риском рецидивирования (например, с выраженной пролиферативной витреоретинопатией (ПВР) или посттравматических отслоек сетчатки).

Группа изобретений относится к медицине. Набор линз для пациентов с пресбиопией с разным зрением глаз содержит: руководство по подбору с указанием вариантов конструкции линзы и дополнительной оптической силы и группу линз, имеющих множество конструкций, каждая из которых имеет свою силу преломления.

Изобретение относится к медицине. Система наконечника содержит: ультразвуковой наконечник, который содержит источник вибрации, выполненный с возможностью формирования множества ультразвуковых колебаний, и звукоприемник, выполненный с возможностью преобразования вибраций в ультразвуковые движения; и лопатку, подключенную к звукоприемнику и выполненную с возможностью перемещения под воздействием ультразвуковых движений.

Изобретение относится к медицине, а именно к офтальмологии, и предназначено для предотвращения и/или замедления прогрессирования миопии. Линза включает центральную оптическую зону офтальмологической линзы, выполненную с возможностью коррекции фовеального зрения при миопии; первую периферическую зону, окружающую центральную оптическую зону и имеющую оптическую силу, которая увеличивается к первому пику, имеющему оптическую силу от +1,00 дптр до +15,00 дптр по сравнению с оптической силой в центральной оптической зоне и находящемуся на расстоянии от 0,75 мм до 2,0 мм от центральной оптической зоны линзы; и вторую периферическую зону, окружающую первую периферическую зону и имеющую второй пик, имеющий оптическую силу от +1,00 дптр до +15,00 дптр по сравнению с оптической силой в центральной оптической зоне и находящийся на расстоянии от 2,0 мм до 3,5 мм от центральной оптической зоны линзы, при этом оптическая сила второго пика отлична от оптической силы первого пика, причем указанная линза, выполнена с возможностью формирования профиля оптической силы, который обеспечивает замедление, сдерживание или предотвращает прогрессирование миопии для зрачка размером от приблизительно 3 мм до приблизительно 7 мм в диаметре.

Группа изобретений относится к медицине. Устройство для рефракционной коррекции содержит: лазерный модуль, сконфигурированный для формирования в глазу лентикула посредством импульсного лазерного излучения в виде множества ультракоротких импульсов и содержащий управляемые компоненты, сконфигурированные для управления фокусированием импульсного лазерного излучения; и управляющий компьютер, сконфигурированный для выдачи управляемым компонентам команд на выполнение этапов способа.

Заявленная группа изобретений относится к медицине, а именно к офтальмологии, и предназначена для предотвращения и/или замедления прогрессирования миопии. Группа включает офтальмологическую линзу и способ ее использования.

Изобретение относится к медицине. Хирургическая система для удаления катаракты содержит: лазерный источник, выполненный с возможностью формирования первой группы лазерных импульсов; направляющую оптику, присоединенную к лазерному источнику, выполненную с возможностью направления первой группы лазерных импульсов в целевую область катаракты глаза; лазерный контроллер и систему изображения Спектральной Области Оптической Когерентной Томографии (СО-ОКТ), выполненную с возможностью формирования изображения, которое включает часть первой фоторазрушаемой области с разрешением изображения в диапазоне от 0,5 до 5 миллионов точек изображения на каждое изображение и со скоростью передачи в диапазоне от 20 до 200 кадров в секунду.

Изобретение относится к медицине. Хирургическая система для удаления катаракты содержит лазерный источник, выполненный с возможностью создания первой группы лазерных импульсов; направляющую оптику, присоединенную к лазерному источнику, выполненную с возможностью направлять первую группу лазерных импульсов в целевую область катаракты глаза; лазерный контроллер; систему изображения Спектральной Области Оптической Когерентной Томографии (СО-ОКТ), выполненную с возможностью создания изображения, содержащего части первой фоторазрушаемой области с разрешением изображения в диапазоне от 0,5 до 5 миллионов точек изображения на каждое изображение и со скоростью передачи в диапазоне от 20 до 200 кадров в секунду; и процессор изображения ОКТ, выполненный с возможностью выполнения анализа изображения.
Изобретение относится к медицине, а более конкретно к офтальмологии, и предназначено для хирургического лечения недистрофического блефароптоза. В проекции связки Уитналла леватор фиксируют и приподнимают, затем леватор тупо отсепаровывают с латеральной в медиальную сторону, образуя тоннель между леватором и конъюнктивой орбиты, в тоннель вводят 2 шпателя и тупо отсепаровывают леватор от конъюнктивы свода и конъюнктивы орбиты до верхнего края тарзальной пластинки и мобилизируют леватор, пересекают боковые рога апоневроза, отмеряют длину леватора от верхнего края тарзальной пластинки до связки Уитналла, производят миотомию леватора.
Изобретение относится к офтальмологии и предназначено для эвисцерации при субатрофии глазного яблока. Проводят резекцию заднего полюса, неврэктомию, удаление внутренних оболочек глаза. Выполняют крестообразный разрез на всем протяжении склеры в межмышечных пространствах в четырех меридианах с образованием лоскутов. Раздвигают их края, а образовавшиеся дефекты склеры заполняют пластинами из политетрафторэтилена и подшивают их к краям лоскутов. Используют пластины преимущественно толщиной 0.2-0.5 мм. Размеры дефектов склеры определяют в зависимости от объема склеральной капсулы и размера орбитального имплантата. Пластины преимущественно трапециевидной формы подшивают к склере узловыми швами. Пластина может быть перфорированной и иметь отверстия диаметром 1-2 мм, расположенные в шахматном порядке. Способ обеспечивает получение адекватного косметического эффекта с формированием опорно-двигательной культи необходимого объема. 6 з.п. ф-лы, 1 пр.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для лечения выворотов нижних век, возникающих при параличе ветвей лицевого нерва и вследствие возрастной атонии орбикулярной мышцы. Выполняют два кожно-мышечных разреза на уровне спаек век, через полученный доступ формируют канал путем отделения кожно-мышечного слоя от передней поверхности хрящевой пластины века и от надкостницы вокруг кожно-мышечных разрезов. Проводят трансплантат через латеральный разрез с помощью проводника с игольным ушком на конце, укладывают трансплантат в канал. Фиксируют концы трансплантата к надкостнице внутреннего и наружного орбитального края на 0,2-0,3 см выше спаек век с последующим наложением рассасывающихся швов на кожно-мышечные разрезы и нерассасыващихся швов на кожные разрезы. В качестве трансплантата используют сетчатый полипропиленовый нерассасывающийся эндопротез, модифицированный покрытием из полигидроксиалканоата. Способ позволяет гарантировать долговременный эффект за счет использования полипропиленового нерассасывающегося эндопротеза, хорошую биосовместимость за счет биодеградируемого покрытия. 1 пр.
Изобретение относится к области медицины, а именно к офтальмохирургии. При повторной операции лазерного специализированного кератомилеза для визуализации края ранее сформированного лоскута роговицы устанавливают источник бокового освещения операционного поля, далее на среднюю периферию роговицы надавливают плоским шпателем так, чтобы кончик шпателя был направлен к лимбу и между ним и лимбом было расстояние 3 мм, край лоскута визуализируют по появившемуся излому края отраженного «зайчика» и появившейся бороздке на поверхности отражающего участка роговицы. Над визуализированным краем лоскута производят рассечение эпителиального слоя роговицы, в образовавшуюся щель вводят шпатель на глубину 1-2 мм и производят частичное отслоение роговицы по всему периметру лоскута. Затем около ножки лоскута шпатель вводят на всю ширину лоскута и отслаивают весь лоскут боковым движением шпателя от ножки до противоположной стороны. Для отслоения лоскута используют плоский шпатель шириной 2 мм, имеющий закругленный конец и плавное уплощение обеих плоскостей по направлению к концу. Способ повышает точность визуализации края ранее сформированного лоскута роговицы, а также позволяет сохранить целостность лоскута роговицы, исключая риск побочных осложнений при проведении повторной операции лазерного специализированного кератомилеза. 1 з.п. ф-лы, 2 пр.

Изобретение относится к офтальмологии. На первом этапе больному на сетчатку в области макулярного отека наносят аппликаты с помощью лазера с длиной волны 577 нм при следующих параметрах субпорогового микроимпульсного лазерного воздействия: мощность 100-270 мВт, экспозиция 20 нс, скважность 10%, диаметр пятна 100 мкм, количество коагулятов 200-800 шт., а на следующий день после лазерного воздействия больному осуществляют крылонебные инъекции аутоплазмы, обогащенной тромбоцитами с концентрацией не менее 800×103 кл/мл, в дозе 3-5 мл в область крылонебной ямки курсом 3-4 инъекции с интервалом 72-96 часов. Способ позволяет обеспечить стабильность достигаемой ремиссии. 1 з.п. ф-лы, 6 ил., 3 пр.
Изобретение относится к области медицины, а именно к офтальмологии, и предназначено для лечения локальной неосложненной регматогенной отслойки сетчатки путем интрасклерального введения пломбирующего вещества. Способ включает разрез склеры в проекции ретинального разрыва, который производят на глубине 2/3 ее толщины, затем путем расслаивания формируют интрасклеральный туннель в проекции ретинального разрыва, соответствующий его размеру, затем в туннель вводят вискоэластик под офтальмоскопическим контролем с помощью бесконтактной линзы 120 дптр, при этом введение осуществляют до полной блокировки ретинального разрыва и нахождения краев разрыва на валу вдавления склеры, затем на склеру накладывают единичный крестообразный шов и конъюнктиву ушивают непрерывным швом; на вторые сутки после введения вискоэластика выполняют транспупиллярную ограничительную лазеркоагуляцию сетчатки вокруг ретинального разрыва со следующими параметрами излучения: мощность - 120-240 мВт, диаметр пятна в фокусе - 200-300 мкм, экспозиция - 0,05-0,1 с, при этом лазеркоагуляты накладывают в три-четыре ряда в шахматном порядке на расстоянии 0,5-1 диаметр коагулята. Изобретение позволяет снизить операционные и послеоперационные осложнения, такие как повреждение хориоидеи с развитием субретинального кровоизлияния, повреждение ампулы вортикозной вены, образование пролежней склеры в месте производимого вдавления. 1 з.п. ф-лы, 2 пр.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для хирургического лечения первичной эндотелиальной дистрофии роговицы Фукса на ранней стадии развития патологического процесса. Формируют основной операционный доступ с височной стороны шириной 2.0 мм и один дополнительный парацентез на 1 или 11 часах для правого и левого глаза соответственно, шириной 1,0 мм. Проводят факоэмульсификацию с имплантацией заднекамерной гидрофобной интраокулярной линзы (ИОЛ) с капсульной фиксацией. Со стороны эпителия роговицы наносят круговую метку диаметром 4 мм, через парацентез в переднюю камеру вводят когезивный вискоэластик, микрокрючком производят десцеметорексис по указанной метке, удаляют монослой видоизмененных клеток эндотелия роговицы, после чего аспирируют вискоэластик, восстанавливают переднюю камеру сбалансированным солевым раствором, герметизируют парацентез. Способ позволяет повысить зрительные функции, исключить необходимость использования донорского материала, снизить длительность манипуляций. 2 пр.

Изобретение относится к медицине, в частности к офтальмологии. На кератотопограмме схематично рисуют сильную и слабую оси роговицы, а также проекцию дугообразных симметричных, диаметрально расположенных разрезов, в виде арок, затем в вертикальном положении тела пациента за щелевой лампой выполняют разметку сильной и слабой осей роговицы с использованием роговичного метчика и красителя, ориентируясь на разметку кератотопограммы. Пациента укладывают на операционный стол, переводя в горизонтальное положение, вводят параметры будущих дугообразных разрезов в программу фемтосекундной лазерной установки, накладывают на глаз вакуумное кольцо фемтосекундного лазера, производят стыковку лазера с вакуумным кольцом, совмещают проецируемые на мониторе арки, соответствующие ранее рассчитанным и введенным параметрам, с разметкой на роговице и производят разрезы роговицы фемтосекундным лазером. Пациента переводят под окуляры микроскопа, шпателем производят раскрытие разрезов, выпуская кавитационные пузырьки, закапывают антибиотик, накладывают мягкую контактную линзу, через 3-6 месяцев проводят второй этап коррекции роговичного астигматизма методом персонализированной фоторефрактивной кератэктомии. Способ позволяет обеспечить безопасность проводимой двухэтапной коррекции роговичного миопического астигматизма с учетом циклоторсии с использованием фемтосекундного лазера у пациентов с тонкой роговицей и получить максимально возможную остроту зрения. 5 ил., 1 пр.
Изобретение относится к области медицины, а именно к офтальмологии, и может быть использовано для проведения патогенетически обоснованного лазерного лечения клапанных разрывов сетчатки в зависимости от выявленного характера витреоретинального сращения. Проводят офтальмоскопию для выявления разрыва, определения его локализации и формы, а также наличия локальной отслойки сетчатки; ультразвуковое В-сканирование для выявления задней отслойки стекловидного тела (ЗОСТ), определения ее формы и акустической плотности (АП) витреальных тракций в % от АП склеры в интактном участке, принятой за 100%; спектральную оптическую когерентную томографию (СОКТ) для определения количества и фиксации витреальных тракций к разрыву. Если с помощью офтальмоскопии выявляют периферический клапанный ретинальный разрыв с локальной отслойкой сетчатки, по данным ультразвукового В-сканирования выявляют наличие незавершенной ЗОСТ с витреальными тракциями АП более 40%, по данным СОКТ определяют единичные витреальные тракции с фиксацией к ретинальному клапану, то показана барьерная лазеркоагуляция разрыва и через 2-3 недели - ИАГ-лазерный витреолизис витреальных тракций. Если с помощью офтальмоскопии выявляют периферический клапанный ретинальный разрыв с локальной отслойкой сетчатки, а по данным ультразвукового В-сканирования выявляют наличие незавершенной ЗОСТ с витреальными тракциями АП менее 40% и по данным СОКТ определяют единичные витреальные тракции с фиксацией только в области верхушки ретинального клапана, то показана барьерная лазеркоагуляция разрыва и через 2-3 недели - ИАГ-лазерное отсечение верхушки ретинального клапана. Если с помощью офтальмоскопии выявляют периферический клапанный ретинальный разрыв с локальной отслойкой сетчатки, по данным ультразвукового В-сканирования выявляют наличие незавершенной ЗОСТ с витреальными тракциями АП от 10 до 90%, по данным СОКТ определяют множественные витреальные тракции с фиксацией по всей площади клапана, то показана барьерная лазеркоагуляция разрыва и через 2-3 недели - ИАГ-лазерная ретинотомия основания клапана с полным его отсечением. Способ позволяет осущетствить ликвидацию витреальных тракций и устранение тракционного воздействия со стороны стекловидного тела при минимизации объема ИАГ-лазерного вмешательства, что приводит к снижению риска интраоперационных осложнений. 3 пр.

Изобретение относится к полупроводниковым устройствам, содержащим матрицу из удерживающих ячеек, в которой каждая удерживающая ячейка сконфигурирована с возможностью содержания медикамента, и каждая удерживающая ячейка содержит элемент активации ячейки, сконфигурированный для высвобождения медикамента из удерживающей ячейки при получении триггера активации. 2 н. и 16 з.п. ф-лы, 7 ил.

Изобретение относится к медицинской технике, в частности к офтальмологии. Устройство для оптической коррекции и тренировки зрения содержит оптические элементы, выполненные в виде линз с переменным фокусом на жидких кристаллах, регулируемый источник постоянного напряжения, соединенный с блоком управления и линзами. Блок управления включает в себя блок амплитудной модуляции, изменяющий фокус оптических элементов в регулируемом диапазоне максимальных значений величины фокусного расстояния, и частотный блок, задающий указанную частоту изменений фокусного расстояния. При этом блок амплитудной модуляции связан с сенсорными регуляторами коррекции зрения и амплитуды колебания фокусного расстояния, а частотный блок - с сенсорным регулятором частоты. Сенсорные регуляторы выполнены с возможностью передачи информации на указанные блоки. Применение данного изобретения позволит расширить арсенал технических средств, а именно устройств для оптической коррекции и тренировки зрения. 1 з.п. ф-лы, 4 ил.
Наверх