Способ контроля скорости формирования тонких пленок на различном расстоянии от источника материала

Изобретение относится к технологии тонких пленок и может быть использовано при отработке технологии получения пленок, когда необходимо определить скорости напыления пленок в зависимости от расстояния источника материала-подложка.Техническим результатом изобретения является ускорение процесса контроля толщины скорости формирования пленки за счет упразднения дополнительных операций: вакуумизации камеры, перемещения подложки на новое расстояние мишень-подложка, формирование пленки, разгерметизация камеры. 2 ил.

 

Изобретение относится к технологии тонких пленок и может быть использовано при отработке технологии получения пленок методом магнетронного распыления, когда необходимо определить скорости напыления пленок в зависимости от расстояния мишень-подложка.

Известны способы косвенного контроля скорости формирования тонких пленок, которая рассчитывается по формуле:

где V - скорость напыления, нм/сек;

d - толщина пленки, нм;

t - время напыления пленки, сек.

Толщину пленок измеряют как во время нанесения пленки (например, резистивный метод, емкостной метод, метод кварцевого датчика), так и после нанесения (например, интерференционный метод) [1]. Все эти методы характеризуются тем, что подложка располагается на одном расстоянии от источника материала. Таким образом, для измерения зависимости скорости от расстояния мишень-подложка необходимо проводить ряд экспериментов, которые включают формирование пленки на подложке, замер ее толщины каким-либо способом, перемещение подложки на следующее расстояние, после чего цикл повторяется. Недостатком этих способов является необходимость многократного повторения операций: вакуумизации камеры, перемещения подложки на новое расстояние мишень-подложка, разгерметизация камеры.

Техническим результатом изобретения является ускорение процесса контроля толщины скорости формирования пленки за счет упразднения дополнительных операций: вакуумизации камеры, перемещения подложки на новое расстояние мишень-подложка, формирование пленки, разгерметизация камеры.

Технический результат достигается за счет того, что подложка находится не параллельно к мишени, а под углом к нему. Таким образом, вместо многократного повторения набора типовых операций, один раз производится формирование пленки с градиентно-изменяющейся толщиной, после чего производится замер толщин пленки в различных точках подложки и производится расчет скорости формирования покрытия.

Способ контроля скорости напыления пленок на различном расстоянии от мишени заключается в формировании покрытия на подложке, расположенной под углом к мишени α (фиг. 1). Предлагаемый способ позволяет сформировать покрытие с градиентно-изменяющейся толщиной, в зависимости от расстояния мишень-подложка за один технологический процесс нанесения. Таким образом, измеряя толщину сформированного покрытия, есть возможность рассчитать скорость напыления покрытия в любой интересующей точке из диапазона расстояния мишень-подложка (rmin-rmax). Где rmin - расстояние от мишени до нижнего края подложки, a rmax - расстояние до верхнего края подложки.

Сравнение заявленного технического решения с другими техническими решениями в данной области техники показало, что способ оперативного контроля скорости напыления пленок на различном расстоянии от источника материала не известен. Кроме того, совокупность существенных признаков вместе с ограничительными позволяет обнаружить у заявляемого решения иные, в отличие от известных свойства, к числу которых можно отнести следующие:

1. Возможность за один цикл формирования пленки контролировать скорость нанесения пленки на различных расстояниях мишень-подложка.

Таким образом, иные в отличие от известных, свойства, присущие предложенному техническому решению, доказывают наличие существенных отличий, направленных на достижение технического результата.

Промышленная применимость предложенного технического решения наглядно продемонстрирована изложенным ниже примером.

Методом магнетронного распыления была сформирована пленка меди на подложке, установленной под углом 40° к плоскости мишени. Пленка формировалась в течение 60 секунд. После чего при помощи атомно-силового микроскопа были замерены толщины пленок в определенных точках подложки и по формуле (1) рассчитана скорость напыления пленки меди. Для подтверждения полученных результатов был проведен эксперимент по напылению пленок на подложки, расположенные параллельно плоскости мишени магнетрона и удаленные на расстояние 45, 50, 55 и 60 мм от мишени, после чего скорость напыления рассчитывалась тем же способом (фиг. 2).

Таким образом, анализ полученных результатов показал, что использование указанного способа позволяет оперативно контролировать скорость формирования покрытия в диапазоне расстояний мишень-подложка.

Источники информации

1. Минайчев В.Е. Нанесение пленок в вакууме. - М: Высшая школа. 1989. - 111 с. ISBN 5-06-000308-6.

Способ определения скорости формирования на подложке тонких пленок в процессе вакуумного магнетронного распыления мишени, включающий измерение толщины пленки и определение скорости ее формирования по зависимости:

V=d/t,

где V - скорость напыления, нм/с; d - толщина пленки, нм; t - время напыления пленки, сек, отличающийся тем, что вакуумное магнетронное распыление мишени осуществляют на подложку, расположенную под углом 40° к плоскости мишени.



 

Похожие патенты:

Изобретение относится к области металлографических исследований и анализа материалов, в частности к определению неоднородности величины зерна в листовых металлах и сплавах.

Группа изобретений относится к технической физике применительно к изучению образцов двухкомпонентных металлических сплавов, а именно исследованиям термозависимостей физических свойств расплавов образцов химически активных сплавов.

Изобретение относится к области аналитической химии и может найти применение в области экологии и охраны окружающей среды при контроле загрязнения атмосферы. Производят отбор пробы при протягивании через фильтр атмосферного воздуха.

Изобретение относится к медицине и предназначено для диагностики гастрита. Определяют соотношение содержания микроэлементов в гомогенате биоптата стенки желудка, а именно: меди, марганца, никеля, кобальта, цинка, свинца и кадмия, выраженное в миллиграммах на килограмм сухого вещества, и при соотношении содержания микроэлементов, соответствующем формуле: CZn>CCu>CMn>CPb>CCd>CNi>CCo, где CZn - содержание цинка, ССu - содержание меди, СMn - содержание марганца, СPb - содержание свинца, CCd - содержание кадмия, CNi - содержание никеля, СCo - содержание кобальта, прогнозируют развитие гастрита.

Изобретение относится к устройствам для взятия проб в жидком или текучем состоянии и может быть использовано в ядерных реакторах с жидкометаллическим теплоносителем для отбора проб расплавленного теплоносителя.

Изобретение относится к области черной металлургии и может быть использовано для отбора проб расплавленного металла из различных металлургических агрегатов с целью их дальнейшего исследования различными способами на содержание химических веществ.

Изобретение относится к аналитической химии и может быть использовано для определения сурьмы и мышьяка в стали и чугуне. Для этого к анализируемой пробе последовательно добавляют концентрированные плавиковую, хлороводородную и азотную кислоты при соотношении 15:10:5 соответственно.

Изобретение относится к способу определения трещиностойкости наплавки роликов установки непрерывной разливки стали (УНРС) и может найти применение при изготовлении и восстановлении дуговой наплавкой роликов системы вторичного охлаждения УНРС.

Изобретение относится к области экологии и охраны окружающей среды, а именно способу контроля водной среды. Для этого собирают макрофиты и подготавливают пробы для определения в них содержания тяжелых металлов.

Группа изобретений относится к установкам для пробирования драгоценных металлов. Техническим результатом является обеспечение возможности расчета рыночной стоимости драгоценного металла в слитке с учетом массы слитка, данных рентгенофлуоресцентного анализа слитка и рыночной стоимости единицы указанного драгоценного металла.

Изобретение относится к способу и установке для магнетронного распыления материала с поверхности мишени с обеспечением большей процентной доли распыленного материала в форме ионов.

Изобретение относится к способу и устройству для нанесения покрытия на горячую подложку в вакуумной камере. Осуществляют размещение подложки (20) на подложкодержателе (24) таким образом, чтобы нижняя поверхность (21а) подложки контактировала с подложкодержателем поверхность к поверхности,подъем подложки (20) на расстояние d относительно подложкодержателя, нагрев поднятой подложки через ее верхнюю поверхность (21b) с помощью нагревательного устройства (22), немедленное последующее нанесение покрытия на горячую подложку, опускание подложки на подложкодержатель (24) и охлаждение подложки.

Изобретение относится к установке и способу нанесения покрытия на подложку. Установка содержит вакуумную камеру, во внутреннем пространстве которой располагают подложку для нанесения на нее покрытия и по меньшей мере одну распыляемую мишень, и устройство для определения износа распыляемой мишени.

Изобретение относится к электроаппаратостроению. Способ нанесения покрытия на медный контакт электрокоммутирующего устройства включает ионно-плазменное напыление молибдена на медный контакт.

Изобретение относится к области производства наноструктурных пленок с активным контролем и оптимизацией процесса их синтеза. .

Изобретение относится к системе ионной пушки, устройству парофазного осаждения и способу формирования многослойной просветляющей пленки на линзе. .

Изобретение относится к области ионно-плазменного напыления многослойных пленок. .

Изобретение относится к средствам наблюдения за процессом нанесения покрытий в вакууме, а именно к способам определения скорости термического осаждения сплавов. .

Изобретение относится к способу осаждения вещества на подложку, импульсному источнику питания для магнетронного реактора и магнетронному реактору. .

Изобретение относится к устройствам для напыления пористых покрытий на ленту и может быть использовано при производстве электронных компонентов, магнитных носителей записывающих устройств, декоративных покрытий.

Изобретение относится к плазменной технике, в частности к магнетронным распылительным системам, и может быть использовано для нанесения покрытий методом магнетронного распыления металлической мишени в вакууме.
Наверх