Способ получения нанокапсул семян чиа (salvia hispanica) в ксантановой камеди

Изобретение относится в области нанотехнологии и пищевой промышленности. Способ получения нанокапсул семян чиа в оболочке из ксантановой камеди заключается в следующем. Порошок семян чиа добавляют в суспензию ксантановой камеди в гексане в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества. Затем перемешивают при 1000 об/мин, приливают метиленхлорид, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре. Соотношение ядро:оболочка составляет 1:1, или 1:3, или 1:2, или 2:1 соответственно. Способ по изобретению обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 4 ил., 5 пр.

 

Изобретение относится к области нанотехнологии и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В пат. 2173140 МПК A61K 009/50, A61K 009/127, Российская Федерация, опубл. 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, Российская Федерация, опубл. 27.06.2009 предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28, Российская Федерация, опубл. 27.08.1999. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул семян чиа, отличающимся тем, что в качестве оболочки нанокапсул используется ксантановая камедь, а в качестве ядра - семена чиа при получении нанокапсул методом осаждения нерастворителем с применением метиленхлорида в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием бутилхлорида в качестве осадителя, а также использование ксантановой камеди в качестве оболочки частиц и семян чиа - в качестве ядра.

ПРИМЕР 1. Получение нанокапсул семян чиа в соотношении ядро : оболочка 1:1

1 г порошка семян чиа медленно добавляют в суспензию 1 г ксантановой камеди в гексане в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 6 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул семян чиа в соотношении ядро : оболочка 1:3

1 г порошка семян чиа медленно добавляют в суспензию 3 г ксантановой камеди в гексане в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 8 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул семян чиа в соотношении ядро : оболочка 2:1

2 г порошка семян чиа медленно добавляют в суспензию 1 г ксантановой камеди в гексане в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 8 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 3 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул семян чиа в соотношении ядроюболочка 1:2

1 г порошка семян чиа медленно добавляют в суспензию 2 г ксантановой камеди в гексане в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 8 мл метиленхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 3 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 5. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length:Auto, Min Expected Size: Auto-длительность единичного измерения 215s, использование шприцевого насоса.

Способ получения нанокапсул семян чиа в ксантановой камеди, характеризующийся тем, что в качестве оболочки нанокапсул используют ксантановую камедь, при этом порошок семян чиа медленно добавляют в суспензию ксантановой камеди в гексане, в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 1000 об/мин, после приливают метиленхлорид, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро:оболочка составляет 1:1, или 1:3, или 1:2, или 2:1 соответственно.



 

Похожие патенты:

Изобретение может быть использовано в системах магнитной записи информации, органической электронике, медицине, при создании ионообменных материалов, компонентов электронной техники, солнечных батарей, дисплеев, перезаряжаемых батарей, сенсоров и биосенсоров.

Изобретение относится к области научного приборостроения и предназначено для использования в качестве электрода сравнения при электрохимических исследованиях. Электродное устройство содержит токоотводящий элемент, диэлектрический пористый корпус, поры которого заполнены металлическими наночастицами и пропитаны гелевым электролитом, а металлические наночастицы покрыты солью данного металла, при этом диэлектрический пористый корпус выполнен в виде сосуда с заостренной нижней донной частью, поры верхней части корпуса заполнены металлическими наночастицами, покрытыми солью этого металла, и пропитаны гелевым электролитом, наружная поверхность верхней части корпуса покрыта сначала слоем серебра, а затем слоем изолирующего материала за исключением небольшого участка в нижней донной части, не заполненного наночастицами и не пропитанного гелевым электролитом, при этом токоотводящий элемент выполнен в виде покрытой серебром металлической крышки корпуса с металлическим выводом, имеющей электрический контакт со слоем серебра на наружной поверхности верхней части корпуса и снабженной отверстием с пробкой для заполнения корпуса в виде сосуда жидким равнопереносящим электролитом.

Изобретение может быть использовано для изготовления прессовок поликристаллического алмаза и режущего инструмента. Наноразмерный одно- или многослойный материал, содержащий графен, спекают примерно 5 мин в отсутствие катализатора - переходного металла при давлении и температуре по меньшей мере 45 кбар и 700°С, соответственно.

Изобретение относится к кабельной промышленности, а именно к электроизоляционным полимерным композициям для изоляции и оболочек кабелей и проводов. Композиция содержит в мас.

Изобретение относится к области нефтепереработки, а именно к переработке тяжелого нефтяного сырья, и может быть использовано для получения бензиновой и дизельной фракций.

Изобретение может быть использовано в лакокрасочной промышленности, полиграфии, в производстве стекла и керамики, пластмасс и декоративной косметики. Контрастный многослойный пигмент содержит субстрат в виде плоских частиц, имеющих средний диаметр от 5 до 300 мкм, и покрыт, по меньшей мере, одним прозрачным диэлектрическим слоем.
Изобретение относится к области биохимии. Предложено биосенсорное устройство для обнаружения биологических микро- и нанообъектов, таких как бактерии и вирусы.

Изобретение относится к наноструктурирующему упрочнению поверхностного слоя прецизионных деталей выглаживанием. Используют выглаживающий инструмент, содержащий индентор, изготовленный из сверхтвердого инструментального материала, и модуль охлаждения индентора жидким теплоносителем.

Изобретение относится к области наномедицинских технологий, а именно к созданию нанотранспортеров лекарственных веществ, и раскрывает способ получения наночастиц полистирольных ионообменников для доставки противоопухолевых препаратов.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул бетулина. Способ характеризуется тем, что порошок бетулина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в изопропаноле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают толуол, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка составляет 1:1, или 1:3, или 3:1.

Изобретение относится к области получения микрокапсул пигмента голубого фталоцианинового. Способ включает диспергирование пигмента в 3,0% растворе поливинилпирролидона или поливинилового спирта в воде с использованием неионогенного поверхностно-активного вещества (ПАВ) - ОС-20 в количестве 1,0-1,5% от массы пигмента и осаждение полимера на поверхности частиц.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул жирорастворимых витаминов А или Е в оболочке из желатина.

Изобретение относится к области фармацевтической химии и медицины. Способ получения микрокапсул с настойкой пустырника или валерьяны в желатине характеризуется тем, что в качестве оболочки микрокапсул используется желатин, при этом 5 мл настойки настойки пустырника или валерьяны прибавляют в суспензию желатина в петролейном эфире, содержащую 1г или 3г указанного полимера, в присутствии 0,01г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 1300 об/мин, приливают 5 мл гептана, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре.
Изобретение относится к композиционным средствам пожаротушения, в частности к порошкообразным микрокапсулированным огнегасящим средствам, огнегасящим материалам и покрытиям, содержащим огнегасящий агент в форме микрокапсул.
Изобретение относится к композиционным средствам пожаротушения, в частности к порошкообразным микрокапсулированным огнегасящим средствам, огнегасящим материалам и покрытиям, содержащим огнегасящий агент в форме микрокапсул.
Изобретение относится к средствам тушения огня, а именно микрокапсулированному огнегасящему агенту, содержащему полимерную оболочку и ядро из огнегасящей жидкости.
Изобретение относится к композиционным средствам пожаротушения, в частности к порошкообразным микрокапсулированным огнегасящим средствам, огнегасящим полимерным материалам и покрытиям, содержащим огнегасящий агент в форме микрокапсул.
Изобретение относится к композиционным полимерным средствам пожаротушения, в частности к порошкообразным микрокапсулированным огнегасящим средствам, огнегасящим материалам и покрытиям, содержащим огнегасящий агент в форме микрокапсул.

Изобретение относится в области нанотехнологии и пищевой промышленности. Описан способ получения нанокапсул семян чиа (ядро) в оболочке из каррагинана.

Изобретение относится к средствам контроля за предпожарными ситуациями, возникающими в результате локальных перегревов электрооборудования, и предназначено для предупреждения пожаров, возникающих в результате подобных неисправностей, в частности неисправностей в электрических розетках.

Изобретение относится к области наномедицинских технологий, а именно к созданию нанотранспортеров лекарственных веществ, и раскрывает способ получения наночастиц полистирольных ионообменников для доставки противоопухолевых препаратов.

Изобретение относится в области нанотехнологии и пищевой промышленности. Способ получения нанокапсул семян чиа в оболочке из ксантановой камеди заключается в следующем. Порошок семян чиа добавляют в суспензию ксантановой камеди в гексане в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества. Затем перемешивают при 1000 обмин, приливают метиленхлорид, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре. Соотношение ядро:оболочка составляет 1:1, или 1:3, или 1:2, или 2:1 соответственно. Способ по изобретению обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 4 ил., 5 пр.

Наверх