Светильник

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, имитирующим спектр солнечного света за счет использования светоизлучающих диодов. В устройстве использованы светодиоды, пики спектров излучения которых находятся в диапазоне частот 507-650 нм. Спектры перекрывают друг друга в разных спектральных участках диапазона, предпочтительно, на уровне 0,4-0,8 от максимальной амплитуды на центральной частоте излучения. Использованы три типа светодиодов разного спектра мощностью от 0,1 до 200 Вт и более, а излучаемый спектр включает спектры излучения таких светодиодов, как Зеленый, Теплый белый и Красный свет, с возможным отклонением от центральной частоты на ±20 нм. Драйверы светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,56 и 1,82 от уровня светового потока, излучаемого светодиодом Красный свет, с возможным отклонением указанных значений на ±25%, либо каждый тип спектра сформирован набором однотипных светодиодов, излучающих свет одной и той же частоты, с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра. Названные светодиоды имеют максимальное излучение на частотах соответственно 524, 587 и 634 нм с возможным отклонением от центральной частоты на ±20 нм. При таком выполнении обеспечивается спектр излучения, близкий к спектру излучения солнечного света в моделируемом частотном диапазоне, при минимизации общего количества используемых светодиодов. 5 ил., 3 табл.

 

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом имитирующим спектр солнечного света за счет использования светоизлучающих диодов.

Известен светильник, содержащий набор светодиодов с разными спектрами излучения, снабженных драйверами, при этом, в составе светильника использованы двенадцать красных светодиодов с длиной волны 660 нм, шесть оранжевых светодиодов с длиной волны 612 нм и один синий светодиод с длиной волны 470 нм (US №6921182, кл. А61В 1/32, 2005).

Известен также светильник, выбранный в качестве прототипа, содержащий набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне порядка 400 - 800 нм, снабженных драйверами (RU №2504143, кл. A01G 7/04, A01G 9/24. Бюл. №2. 2014). В состав светильника входят, по меньшей мере, два типа светодиодов, причем, предпочтительно, чтобы светодиоды первого типа излучали в области синего цвета с длиной волны от 400 нм до 500 нм, а светодиоды второго типа излучали в области красного цвета с длиной волны от 600 нм до 700 нм, причем, свет, излучаемый первой группой светодиодов, состоит приблизительно из 80%-90% красного света и 10%-20% синего света.

Все выше перечисленные технические решения направлены на получение оптимального сочетания длин волн для усиления темпов роста растений, а также снижение энергопотребления и увеличение срока службы светильников, при их технической реализации по сравнению с существующими световыращивательными технологиями. Однако, эти решения не обеспечивают спектр излучения близкий к спектру солнца, к которому растения приспособлены генетически. Кроме того, сочетание длин волн, выбранных для усиления роста растений в существующих технических решениях непривлекательно для людей, наблюдающих освещенное растение, а иногда даже вредно для глаз.

Задачей заявляемого изобретения является обеспечение в светильнике спектра излучения соответствующего спектру солнечного света в моделируемом диапазоне частот.

Технический результат, достигаемый в результате реализации заявляемого устройства, заключается в обеспечении спектра излучения близкого к спектру излучения солнечного света в моделируемом частотном диапазоне, при минимизации общего количества используемых светодиодов.

Поставленная задача решается тем, что устройство, содержащее набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне частот порядка 400-800 нм, снабженных драйверами питания, и дополнено следующим: использованы светодиоды, пики спектров излучения которых находятся в диапазоне частот 507-650 нм, при этом, спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона, предпочтительно, на уровне 0,4-0,8 от максимальной амплитуды на центральной частоте излучения, причем, использованы три типа светодиодов разного спектра мощностью от 0,1 до 200 Вт и более, а излучаемый спектр включает спектры излучения таких светодиодов, как Зеленый, Теплый белый и Красный свет, с возможным отклонением от центральной частоты на ±20 нм, при этом, драйверы названных светодиодов, выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,56 и 1,82; от уровня светового потока, излучаемого светодиодом Красный свет, с возможным отклонением указанных значений на ±25%. Кроме того, каждый тип спектра сформирован набором однотипных светодиодов, излучающих свет одной и той же частоты, с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра. Кроме того, названные светодиоды имеют максимальное излучение, на частотах, соответственно, 523, 587 и 634 нмс возможным отклонением от центральной частоты на ±20 нм.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию "новизна". При этом совокупность признаков отличительной части формулы изобретения обеспечивают светильнику спектр излучения соответствующего солнечному свету в диапазоне частот 507-650 нм, причем отличительные признаки отличительной части формулы изобретения обеспечивают решение нижеследующего комплекса функциональных задач:

Признаки «использованы светодиоды, спектры излучения которых находятся в диапазоне 507-650 нм», обеспечивают максимально полное приближение к спектру солнечного света в указанном диапазоне, при минимальном количестве используемых типов светодиодов.

Признаки «спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона» способствуют выравниванию (снижению волнистости)суммарного спектра светильника.

Признаки, указывающие что спектры, составляющие набор светодиодов перекрывают друг друга «предпочтительно, на уровне 0,4-0,8 от максимальной амплитуды на центральной частоте излучения соответствующих светодиодов» также способствуют снижению волнистости суммарного спектра светильника.

Признаки, указывающие что «использованы три типа светодиодов разного спектра мощностью от 0,1 до 200 Вт и более, а излучаемый спектр включает спектры излучения таких светодиодов, как Зеленый, Теплый белый и Красный свет» обеспечивают формирование светильником спектра излучения близкого к солнечному свету в заданном диапазоне частот.

Признаки указывающие, что возможно отклонение излучаемого светодиодами спектра «от центральной частоты на ±20 нм» задают параметры, обеспечивающие компоновку линейки или матрицы светодиодов.

Признаки, указывающие что «драйверы названных светодиодов, выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,56; 1,82 от уровня светового потока, излучаемого светодиодом Красный свет» обеспечивают необходимое выравнивание излучений светодиодов, снижающее волнистость суммарного спектра светильника.

Признаки, указывающие, что возможно отклонение уровня энергии подаваемой на светодиоды на ±25%, задают параметры подачи энергии на светодиоды, обеспечивающие оптимальную компоновку линейки или матрицы светодиодов.

Признаки, указывающие что «каждый тип спектра сформирован набором однотипных светодиодов, с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра» обеспечивают возможность использования, как одиночного светодиода большой мощности, так и матрицы, сформированной из нескольких светодиодов малой мощности, дающих суммарную мощность излучения, требующуюся для формирования заданного уровня светового потока.

Признаки, указывающие что «названные светодиоды имеют максимальное излучение, на частотах, соответственно, 523, 587 и 634» конкретизируют технические характеристики светодиодов.

Сущность заявляемого изобретения иллюстрируется чертежами, где на фиг. 1 показаны спектры излучения трех типов использованных светодиодов, выровненных по мощности излучения;

на фиг. 2 показан спектр суммарного излучения трех светодиодов, имитирующих солнечный спектр в диапазоне частот 507-650 нм (розовая кривая «Спектр Светильника» - спектр светильника из трех светодиодов; красная кривая «Спектр Солнца» - спектр солнца, измеренный во Владивостоке 22.05.2017 г. в 11:36 спектрофотометром ТКА; пунктирная розовая кривая - спектр Красного светодиода; пунктирная серая кривая - спектр Теплого Белого светодиода; пунктирная зеленая кривая - спектр Зеленого светодиода);

на фиг. 3 показана светодиодная матрица, состоящая из трех светодиодов с разным типом спектров, формирующая суммарный спектр излучения, имитирующего солнечный спектр в диапазоне частот 507-650 нм; на фиг. 4 показаны реальные спектральные и энергетические параметры трех типов светодиодов, которые позволили сформировать излучение светильника близкое к солнечному спектру в заданном диапазоне;

на фиг. 5 показан реальный суммарный спектр излучения матрицы из трех светодиодов с уровнем светового потока от Зеленого и Теплого Белого светодиодов равных 1,56 и 1,82 от уровня светового потока, излучаемого Красным светодиодом.

В настоящее время промышленность выпускает различные светодиоды с узкой и широкой полосой излучения, с пиком излучения, приходящимся на одну или несколько определенных частот света. Охвачен широкий диапазон частот света от УФ излучения до красного и инфракрасного света. Кроме того, имеются светодиоды белого света с различной цветовой температурой.

Таким образом, если имеется набор светодиодов с различными спектрами (Фиг. 1), то из них можно набрать линейку или матрицу светодиодов с перекрытием спектральных кривых на уровне примерно 0,4-0,8 и тогда они, суммируя свои энергетические параметры, будут формировать спектр излучения соответствующий солнечному свету в заданном диапазоне частот (Фиг. 2).

Таким образом, если известен моделируемый диапазон спектра солнечного излучения, то подбирая различные светодиоды с разным спектром и задавая им разную интенсивность излучения, можно получить источник света очень похожий по своему спектру на солнечное излучение. Трудность заключается в том, что отдельные монохромные светодиоды имеют очень узкий спектр генерирования излучения определенной частоты и непостоянный уровень мощности излучения при одних и тех же номиналах выпускаемой продукции у разных производителей и даже в пределах одной партии, у одного и того же производителя. Поэтому, для перекрытия всего диапазона частот фотосинтетически активной радиации солнечного спектра (от 400 до 800 нм) требуется большое количество разных типов светодиодов. Однако, чем больше количество используемых светодиодов, тем труднее подобрать их точные параметры, к которым относятся мощность, частота излучения и режимы питания по току, чтобы синтезируемая полоса частот в точности соответствовала солнечному спектру. Необходимое условие перекрытия спектральных кривых на уровне примерно 0,4-0,8 вызывает сильное влияние отдельных спектров друг на друга. Изменение мощности излучения всего одного из светодиодов, например, Красного, вызывает изменение уровня пиков излучения всех других светодиодов, в первую очередь максимальное влияние будет оказано на Теплый белый светодиод и меньшее влияние на Зеленый светодиод. Последующая регулировка уровня излучения Теплого белого светодиода приведет к изменению уровня пиков излучения и Красного и Зеленого светодиодов. Последовательный перебор всех возможных значений уровней излучения каждого светодиода для приближения к солнечному спектру может занять очень много времени.

По каждому типу светодиодов спектрофотометром "ТКА-Спектр" были сняты спектральные и энергетические параметры (Фиг. 1, фиг. 2 и фиг. 4), которые позволили сформировать излучение светильника близкое к солнечному спектру (Фиг. 2, фиг. 4).

Моделируемый диапазон 507-650 нм из диапазона фотосинтетически активной радиации солнечного спектра, в общем случае составляющего 400-800 нм, реализуется набором из трех типов светодиодов, имеющих разную мощность и разные спектры. Например, в этом наборе есть три светодиода мощностью по 50 Вт следующего состава: Зеленый, Теплый белый и Красный (Фиг. 3). На фиг. 4 приведены спектры излучения каждого светодиода. Видно, что максимальные значения плотности мощности излучения, измеренные прибором спектрофотометром "ТКА-Спектр" на расстоянии 50 см от центра светодиодов, по их оси, имеют разную амплитуду пиков излучения и разное расположение на оси частот. В данном случае на все 50 Вт светодиоды подавался один и тот же ток 1500 мА (Табл. 1). Параметры светодиодов и их излучающая способность подобраны таким образом, чтобы мощности излучения их спектров соответствовали параметрам коэффициентов мощности излучения светодиодов приведенных в таблице 3. В этом случае, если просто просуммировать мощности всех спектров излучения указанных светодиодов, то суммарный спектр будет иметь форму очень близкую к спектру солнечного света в заданном диапазоне частот (на фиг. 5 кривая «Светильник» розового цвета; желтым фоном подсвечен моделируемый диапазон частот). Но часто бывает, что светодиоды имеют другие мощности излучения и при их простом суммировании получающаяся кривая будет очень далека от формы солнечного света. В этом случае, для того чтобы из этого набора светодиодов получить спектр солнца в диапазоне частот 507-650 нм необходимо привести все пики излучения к одной и той же величине, т.е. пронормировать. Для этого существует два способа: первый - регулировка осуществляется изменением тока питания с помощью токовых драйверов питания у каждого светодиода; второй - регулировка осуществляется подбором количества однотипных по частоте излучения светодиодов, работающих в номинальном рабочем режиме, но которые имеют разную мощность излучения, т.е. разный паспортный номинал мощности. Подбирая количество однотипных по частоте излучения светодиодов, добиваются необходимой суммарной мощности излучения. После приведения уровня излучения всех типов светодиодов к одной и той же величине, спектр излучения всех светодиодов примет вид, изображенный на фиг. 1. При этом названные области спектров излучения светодиодов перекрывают друг друга в разных спектральных участках моделируемого диапазона излучения, где-то, на уровне 0,4-0,8 от максимальной амплитуды.

Теплый белый светодиод имеет два пика излучения: на частоте 440 нм меньшего размера и на частоте 587 нм максимум излучения.

Желтым фоном на фиг. 2 выделена область моделирования солнечного спектра в диапазоне частот 507-650 нм. В таблице 2 приведены параметры трех типов светодиодов (или наборов светодиодов одного и того же типа) моделирующих диапазон 507-650 нм солнечного спектра после их приведения к одной и той же плотности излучения и нормирования.

Из табл. 2 видно, что у Теплого Белого светодиода имеется два спектральных пика мощности излучения, один из которых на частоте 587 нм (максимальная амплитуда равна 1), а на частоте 440 нм - 0,67. Все остальные светодиоды имеют один пик излучения. Измерения проводились спектрофотометром "ТКА-Спектр", на расстоянии 500 мм от центра светодиодов по их оси.

Если каждый светодиод будет излучать световую энергию измеренную в Вт/м2, в пропорциях соответствующих коэффициентам приведенными в табл. 3, то получится суммарный спектр мощности излучения светильника, показанный на фиг. 2. (кривая Спектр Светильника) который хорошо совпадает со спектром мощности излучения Солнца в этом диапазоне.

В этом случае все светодиоды должны получать энергию от токовых драйверов питания таким образом, чтобы их излучение соответствовало коэффициентам таблицы 3. В результате будет сформирован суммарный спектр излучения светильника, практически полностью повторяющий спектр излучения солнечного света (фиг. 2, розовый цвет кривой). Спектр мощности солнечного света измерялся спектрофотометром марки "ТКА-Спектр" во Владивостоке 22.05.2017 в 11-36 местного времени.

В процессе работы была сформирована действующая матрица светодиодов (Фиг. 3), в которой каждый светодиод был запитан током с помощью токового драйвера таким образом, чтобы мощность излучения каждого типа светодиода, измеренная на расстоянии 50 см от светодиодов, давала вклад в суммарное излучение в соответствии с режимами, указанными в таблице 3. Спектры каждого типа светодиодов, измеренные спектрофотометром, приведены на фиг. 4.

При включении всех светодиодов с указанными режимами спектр мощности излучения светильника характеризовался зависимостью, показанной на фиг. 5 (кривая «Светильник» розового цвета; кривая красного цвета - спектр солнца; желтый фон показывает моделируемый диапазон). Полученная спектральная облученность в диапазоне частот 507-650 нм равна 97 мВт/м на расстоянии 50 см от светильника и имеет гладкий характер, практически полностью соответствует солнечному спектру со среднеквадратичной ошибкой отклонения не превышающей 6,5%.

Важно отметить, что коэффициенты в табл. 3 относятся к плотности мощности излучения света, или к спектральной облученности, измеренной на одном и том же расстоянии одним и тем же прибором в данном случае спектрофотометром "ТКА-Спектр". При этом, приведенные в табл. 3 коэффициенты никак не характеризуют потребляемую светодиодами энергию или величину тока, протекающую через светодиоды. Это связано с тем, что К.П.Д. у каждого светодиода разный и режимы питания светодиодов тоже все разные. Например, если есть два светодиода одинакового типа, но с разными К.П.Д., например 15% и 30%, то спектральная облученность, полученная на одном и том же расстоянии у первого светодиода будет в 2 раза меньше при одном и том же питании по току или потребляемой мощности, чем у второго. И если их запитать по току в соответствии с таблицей 3, то суммарный спектр всех светодиодов будет сильно отличаться от расчетного спектра, изображенного на фиг. 2. В случае, если имеются два светодиода с одинаковой частотой излучения, но разным номиналом мощности, например 1 Вт и 10 Вт, то первый тип светодиода можно запитать максимальным током 300 мА, а второй тип - 900 мА. Соответственно плотности мощности излучения световой энергии у них будут очень сильно отличаться. Поэтому, коэффициенты, приведенные в таблице 3, должны характеризовать только соотношение величин облученности для каждого типа светодиодов, измеренных спектрофотометром на одном и том же расстоянии от светодиода.

Кроме того, очень важно использовать такие режимы питания всех трех типов светодиодов или групп однотипных по частоте излучения светодиодов в сборке, чтобы в каждой группе однотипные светодиоды, излучающие свет одной и той же частоты, давали суммарный пик излучения одинаковой величины, которую удобно приравнять к относительной единице, как это изображено на фиг. 1.

Светильник, содержащий набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне частот порядка 400-800 нм, снабженных драйверами питания, отличающийся тем, что использованы светодиоды, пики спектров излучения которых находятся в диапазоне частот 507-650 нм, при этом спектры использованных светодиодов перекрывают друг друга в разных спектральных участках диапазона, предпочтительно, на уровне 0,4-0,8 от максимальной амплитуды на центральной частоте излучения, причем использованы три типа светодиодов разного спектра мощностью от 0,1 до 200 Вт и более, а излучаемый спектр включает спектры излучения таких светодиодов, как Зеленый, Теплый белый и Красный свет, с возможным отклонением от центральной частоты на ±20 нм, при этом драйверы названных светодиодов выполнены с возможностью подачи энергии питания такой величины, чтобы уровень светового потока от соответствующих светодиодов был равным 1,56 и 1,82 от уровня светового потока, излучаемого светодиодом Красный свет, с возможным отклонением указанных значений энергии на ±25%, либо каждый тип спектра сформирован набором однотипных светодиодов, излучающих свет одной и той же частоты, с возможностью генерирования мощности светового потока одинаковой для каждого отдельного типа спектра, кроме того, названные светодиоды имеют максимальное излучение на частотах соответственно 524, 587 и 634 нм с возможным отклонением от центральной частоты на ±20 нм.



 

Похожие патенты:

Изобретение относится к области сельского хозяйства, в частности к земледелию и растениеводству. Способ включает последовательно этапы: формирование по меньшей мере двух опытных образцов семян различных зерновых культур или различных сортов зерновых культур и по меньшей мере двух контрольных образцов соответствующих семян, обеспечение контакта опытных образцов семян с почвой с добавлением воды до достижения наименьшей влагоемкости почвы; обеспечение контакта контрольных образцов семян с песком с добавлением воды до достижения наименьшей влагоемкости песка; выдержка указанных опытных и контрольных образцов семян до проращивания, удаление почвы и песка с пророщенных семян и помещение очищенных опытных и контрольных образцов пророщенных семян в идентичные прозрачные емкости с водой, уплотнение пророщенных семян в емкостях посредством вибрационного воздействия в вертикальной плоскости, и ударного воздействия на дно емкости, при этом после вибрационного воздействия на образцы семян в емкости помещают идентичные по массе грузы, определение насыпных объемов опытных (V2i) и контрольных (V3i) образцов пророщенных семян по высоте размещения груза от дна емкости, определение величины ингибирующего действия почвы на развитие семян по сравнению с песком для каждого образца (Иi) по формуле: Иi=((V3i-V2i)/(V3i-V1))*100%, где V1 - поправочный коэффициент, характеризующий насыпной объем набухших семян злаковых колосовых зерновых культур, проращивание которых осуществлялось в течение 24 часов на песке; V2i - насыпной объем проросших семян опытного образца; V3i - насыпной объем проросших семян контрольного образца, i - порядковый номер опытного и соответствующего контрольного образцов; определение минимального Иi, по которому определяют опытный образец семян зерновой культуры с минимальной величиной ингибирования исследуемой почвой, характеризующей возможность получения максимального урожая данной зерновой культуры.

Изобретение относится к области сельского хозяйства, в частности к виноградарству. Способ включает посадку растений, установку опоры, обрезку, формирование кустов и зоны плодоношения и прикрепление кустов к опоре.

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает одновременный посев семян выращиваемых культур, уход за посевами и уборку урожая.

Изобретение относится к области сельского хозяйства, в частности к семеноведению. Способ включает замачивание семян в растильнях и проращивание семян в термостате при температуре 20-30°С.

Способ относится к области сельского хозяйства, в частности к семеноведению. Способ включает трехсуточное проращивание семенного материала в растильнях, заполненных кварцевым песком.

Изобретение относится к области сельского хозяйства. Способ включает определение объема почвы, являющегося произведением площади, занятой растением, высеваемым по гексагональной схеме, и глубины проникновения корней.

Изобретение относится к сельскому хозяйству. Для уничтожения сорняков в посевах фасоли проводят их обработку гербицидом в виде баковой смеси в фазе 2-3 настоящих листьев фасоли, 2-4 листьев злаковых и высоте 8-12 см двудольных сорняков.

Изобретение относится к области сельского хозяйства и может быть использовано в селекции льна на устойчивость к льноутомлению. Способ включает наработки токсина в лабораторных условиях и последующее равномерное его распределение по поверхности почвы опытного участка.

Изобретение относится к области лесного и сельского хозяйства и экологии. Способ включает фитоиндикацию новообразованной растительностью.

Изобретение относится к области сельского хозяйства, в частности к прогнозированию урожайности сельскохозяйственных культур, болезней сельскохозяйственных растений и экологических бедствий.

Изобретение относится к области физиологии и нанобиотехнологии растений. Способ включает выращивание растений в присутствии тяжелых металлов меди и никеля и последующую оценку устойчивости.

Изобретение относится к области экспериментальной биологии, растениеводству, сельскому и лесному хозяйствам. Способ включает измерение динамики светорассеяния фотосинтезирующей растительной ткани в процессе засветки монохроматическим оптическим излучением синей области спектра в зоне первого максимума поглощения хлорофилла 460-480 нм.

Изобретение относится к лесному и сельскому хозяйству и может быть использовано для предпосевной обработки семян. Устройство содержит рабочую камеру из немагнитного материала, кольцевой индуктор и ферротела в виде сфер.

Изобретение относится к области сельскохозяйственного машиностроения. Автоматизированный агрегат магнитно-импульсной обработки садовых растений содержит раму, аппарат магнитно-импульсной обработки, индукторы, установленные с возможностью изменения угла наклона, систему питания, съемные колеса, автоматическую систему адаптации с актуаторами, ультразвуковые датчики, контроллер.

Изобретение относится к области растениеводства, в частности к осветительным устройствам. Светильник содержит набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне порядка 400-800 нм, снабженных драйверами.
Изобретение относится к области сельского хозяйства, в частности к растениеводству. В способе облучают растения в теплице в ультрафиолетовом УФ-С диапазоне длин волн.

Изобретения относятся к области сельского хозяйства, в частности к растениеводству. В способе располагают множество синих светоизлучающих диодов (СИД) в центральной части устройства-источника света, располагают множество красных СИД в периферийной части устройства-источника света, перемешивают множество белых СИД с красными СИД и располагают белые СИД в периферийной части устройства, перемещают устройство-источник света в положение, в котором синие СИД облучают верхушку стебля листового овоща, а красные СИД облучают листья листового овоща, во время начального периода роста, и прекращают облучение светом от синих СИД и красных СИД.

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, максимально соответствующим спектру солнечного света за счет использования светоизлучающих диодов.

Изобретение относится к системе освещения для растениеводства и производственному помещению для растениеводства с применением такой системы освещения для растениеводства.

Изобретение относится к растениеводческому осветительному устройству, к способу стимулирования роста растений и биоритма растения, к светильнику, содержащему упомянутое растениеводческое осветительное устройство, и к растениеводческому сооружению, содержащему упомянутое растениеводческое осветительное устройство или упомянутый светильник.
Наверх