Способ приготовления каталитически-сорбционного материала для удаления хлора и способ удаления хлорорганических соединений

Настоящее изобретение относится к способу приготовления каталитически-сорбционного материала для удаления хлора, включающему синтез инертного носителя, его пропитку растворами нитрата никеля и ацетата магния, причем в качестве компонента носителя, повышающего структурные характеристики, такие как объем пор и удельную площадь поверхности, используют мезопористое соединение одного из типов: SBA-15, MCF, Al-TUD, в количестве 25-35% масс., которое добавляют к порошку бемита, пептизируют разбавленным раствором азотной кислоты, высушивают и прокаливают при 550°С. Также изобретение относится к способу удаления хлороорганических соединений из легкой дизельной фракции, характеризующемуся тем, что указанный выше каталитически-сорбционный материал загружают в стальной трубчатый реактор, подают сырье при температуре 340-380 °С и давлении водорода 4,0-6,0 МПа с объемной скоростью 1,0-4,0 ч-1, и водородсодержащий газ с объемным соотношением водорода к сырью 600 : 1. Технический результат – приготовление каталитически-сорбционного материала удаления соединений хлора из средний дистиллятов нефти с высокими показателями удельной поверхности, объема пор и механической прочности, приводящего к эффективности удаления органических соединений хлора из средних нефтяных дистиллятов путем их превращения в хлористый водород и углеводороды и сорбции хлористого водорода на поверхности мезопористого материала, содержащего оксид магния и оксид никеля. 2 н.п. ф-лы, 2 табл., 4 пр.

 

Изобретение относится к каталитической химии, нефтехимии и нефтепереработке, в частности, к катализаторам удаления хлорорганических соединений и может быть использовано в нефтеперерабатывающей промышленности при очистке нефтяных фракций от примесей для последующего получения дизельного топлива и других нефтепродуктов.

Возрастающие экологические и эксплуатационные требования к качеству продукции нефтеперерабатывающей промышленности недостижимы при использовании существующих отечественных промышленных катализаторов. В последние годы в связи с постепенной выработкой месторождений легких малосернистых нефтей нефтеперерабатывающее предприятия РФ переходят к переработке тяжелых высоковязких нефтей, характеризующихся повышенным содержанием гетероатомных соединений, в частности, хлора. Хлор находится в сырой нефти в двух формах: неорганической и органической, причем оба вида хлоридов губительно воздействуют на процессы переработки нефти. Так, хлористые вещества в сырой нефти и дистиллятах приводят к коррозии оборудования, блокируют трубопроводы и отравляют катализатор. Это серьезно вредит безопасности и экономической эффективности производства на таких блоках, как атмосферно-вакуумная перегонка, каталитический крекинг, риформинг и гидроочистка.

Известны различные катализаторы удаления хлора из нефтяных фракций и способы их получения, однако все они имеют свои недостатки.

Описан катализатор защитного слоя для защиты от отравления соединениями хлора медьсодержащих катализаторов в низкотемпературной реакции водяного сдвига. В изобретении в качестве защитного катализатора используют свинец и/или соединения свинца, наносимые на инертный носитель. В качестве прекурсора свинца используют такие соединения, как нитрат свинца, карбонат свинца, основной карбонат свинца и алюминат свинца. В частности, методом пропитки раствором нитрата свинца получают катализаторы с содержанием свинца 10.7-23.7% масс. Разложение нитрата свинца проводят при 900°С.

US 2006166817 А1, опубл. 27.07.2006.

При использовании данного изобретения в процессе удаления хлора из нефтяных дистиллятов, существенным недостатком является наличие соединений свинца в качестве активного компонента. Поскольку свинец и его соединения являются токсичными, их содержание в топливах строго ограничивается. В связи с этим, применение такого катализатора нецелесообразно.

Известен сорбент хлорорганических соединений. В качестве сорбента используют цеолит типа 13Х с соотношением Si/Al меньшим, чем 1.25. Данный сорбент применяют для удаления соединений хлора в установке каталитического риформинга, причем как из жидкостных потоков, так и из выделяющегося в результате процесса водорода.

US 2012190906 А1, опубл. 26.07.2012.

Недостатком данного способа удаления хлора является то, что хлористые органические соединения целиком сорбируются в порах цеолита с потерей углеводородной части. Это означает, что выход углеводородов будет снижен, что отразится на качестве получаемого топлива.

В патенте SG 194435 А1, опубл. 30.12.2013, описывают каталитическое дехлорирование сырья, загрязненного соединениями хлора. Процесс удаления хлора представляет собой подачу в зону каталитического дехлорирования смеси сырья (включающим в себя хлорорганические соединения) с так называемым газом-носителем. В каталитической зоне при необходимых условиях протекают реакции удаления хлора с образованием в продуктовой смеси следующих компонентов:

• газа-носителя;

• хлороводорода;

• углеводородов, не содержащих примеси хлора.

Далее, углеводородный продукт отделяют от хлороводорода и газа-носителя. Катализатор в данном процессе может состоять из оксида кремния, алюмосиликата, оксида алюминия, оксида цинка, оксида титана, оксида циркония, оксида магния, а также сочетания вышеобозначенных оксидов. При этом выделяющийся хлороводород никак не связывается с катализатором, а уносится с потоком газа-носителя. В патенте в качестве одного из возможных вариантов газа-носителя авторы приводят водород, который к тому же промотирует дехлорирование. В другом примере в качестве газа-носителя приведен азот.

SG 194435 А1 опубл. 30.12.2013.

Процесс удаления хлора, указанный в данном изобретении, обладает существенным недостатком. Образующийся хлороводород не связывается с катализатором и не сорбируется в системе, а присутствует в смеси продуктов до тех пор, пока не произойдет его удаление на стадии разделения. При этом никак не снижается его коррозионное действие на элементы системы.

Известен способ удаления органических хлоридов из сырья путем пропускания сырья через слой катализатора защитного слоя. Катализатор представляет собой композицию из оксида магния, смешанного с инертным связующим. В качестве сырья в процессе дехлорирования используют толуол, загрязненный соединениями хлора. Соединения хлора удаляют для предотвращения отравления цеолитсодержащего катализатора, участвующего в процессе диспропорционирования или алкилирования толуола. Авторы патента утверждают, что оксиды щелочноземельных металлов, а именно, магния и кальция, эффективно удаляют хлор и могут выступать в качестве катализаторов защитного слоя. В изобретении доля оксида магния в катализаторе составляет минимум 50% масс. и доходит до 80% масс.

US 4721824, опубл. 26.06.1988.

Недостатком в данном изобретении представляется невысокая величина удельной поверхности - от 30 до 60 м2/г.

Также известно изобретение, в котором описывают способ удаления малых количеств органических хлоридов путем контактирования углеводородного сырья с регенерируемым твердым адсорбентом, включающим в себя один из металлов группы железа, кобальта или никеля, или их комбинации, и/или их гидридов, нанесенных на пористую подложку, такую как оксид кремния. При этом хлориды, содержащиеся в сырье, превращаются в нерастворимые хлориды металлов, содержащихся в адсорбенте. В патенте также описывают способ регенерации адсорбента и процесс, где регенерированный адсорбент используют для доочистки продуктов удаления хлора.

US 5928500 (А), опубл. 1997.10.08.

Недостатком данного способа является невысокая стабильность адсорбента. В различных исполнениях, указанных в патенте, эффективность удаления хлора адсорбентом составляет от 97% (в течение 16 часов) до 99,8% (в течение 4 часов). После указанного промежутка времени адсорбент теряет свою активность в течение часа.

Технической задачей настоящего изобретения является разработка способа приготовления каталитически-сорбционного материала удаления соединений хлора из средних дистиллятов нефти, характеризующегося высокими показателями удельной поверхности, объема пор, а также механической прочности, а также способа удаления хлорорганических соединений из легкой дизельной фракции.

Поставленная задача решается способом приготовления каталитически-сорбционного материала для удаления хлора, включающим синтез инертного носителя, его пропитку растворами нитрата никеля и ацетата магния, в котором в качестве компонента носителя, повышающего структурные характеристики, такие как объем пор и удельную площадь поверхности, используют мезопористое соединение одного из типов: SBA-15, MCF, Al-TUD, в количестве 25-35% масс., которое добавляют к порошку бемита, пептизируют разбавленным раствором азотной кислоты, высушивают и прокаливают при 550°С.

Каталитически-сорбционный материал для удаления соединений хлора из средних дистиллятов нефти, содержит, % масс.: оксид никеля 3-6, оксид магния 5-10, мезопористый материал 25-35, оксид алюминия - остальное.

Также заявлен способ удаления хлороорганических соединений из легкой дизельной фракции, характеризующийся тем, что разработанный каталитически-сорбционный материал загружают в стальной трубчатый реактор, подают сырье при температуре 340-380°С и давлении водорода 4,0-6,0 МПа с объемной скоростью 1,0-4,0 ч-1, и водородсодержащий газ с объемным соотношением водорода к сырью 600:1.

После 2 часов после начала подачи сырья отбирают «нулевую» пробу, затем еще через час отбирают целевую пробу и анализируют содержание хлора в продукте.

В качестве компонента носителя используют мезопористые материалы, характеризующиеся высоким значением удельной поверхности, объема пор. Мезопористые материалы представляют особый интерес, поскольку размер их пор превышает размер молекул большинства веществ, входящих в состав сырья, что приводит к уменьшению диффузионных ограничений и, как следствие, увеличению активности адсорбции хлорорганических соединений. Материалы SBA-15, Al-TUD, MCF выбраны в качестве компонентов сорбционных систем, поскольку они обладают высокой удельной поверхностью и порами более 50 Их синтез проводится в мягких условиях без использования дорогостоящих компонентов.

Изобретение иллюстрируют следующие примеры.

Пример 1

Пример иллюстрирует способ приготовления каталитически-сорбционного материала с использованием в качестве компонента носителя мезопористого материала SBA-15. Для приготовления носителя используют оксид алюминия в виде бемита в количестве 70% масс. и мезопористый материал SBA-15 в количестве 30% масс. Материал типа SBA-15 получают по стандартной методике, описанной в работе [Meynen V., Cool P., Vansant E.F. Verified syntheses of mesoporous materials // Microporous Mesoporous Mater. Elsevier Inc., 2009. Vol. 125, №3. P. 170-223]. Источником кремния для синтеза служит тетраэтоксисилан, темплатом - плюроник Р123 - триблок-сополимер этилен- и пропиленоксида ЕО20РО70ЕО20 с молекулярной массой 5800.

Приготовление носителей, содержащих в прокаленном виде 35% масс. мезопористого материала SBA-15 и 65% масс. γ-Al2O3 осуществляют следующим способом.

В фарфоровую ступку помещают расчетное количество материала SBA-15 и бемита, тщательно растирают в течение 20 минут. При перемешивании небольшими порциями постепенно прибавляют раствор концентрированной азотной кислоты в дистиллированной воде и перемешивают в течение 15 минут. Далее растирают в течение 20 минут, при необходимости нагревая смесь на горячей водяной бане (в случае, если смесь оказывается слишком жидкой). После того как смесь становится вязкой и пластичной, ее формуют с помощью поршневого экструдера с диаметром выходного отверстия 1,2 мм. Экструдаты оставляют сушиться на ночь, затем сушат при циркуляции воздуха по следующей программе:

• 60°С в течение 2 часов;

• 80°С в течение 2 часов;

• 110°С в течение 2 часов.

Прокаливают в муфельной печи в токе воздуха при 550°С в течение 4 ч.

Полученные экструдаты делят на части длиной 2-3 мм и проводят пропитку в две стадии по влагоемкости. На первой стадии пропитывают раствором ацетата магния в дистиллированной воде. Пропитку проводят в течение 20 минут при перемешивании, затем сушат пропитанный носитель в сушильном шкафу по ступенчатому режиму: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч. После этого каталитически-сорбционный материал прокаливают при температуре 550°С в течение 4 ч. На второй стадии пропитывают раствором нитрата никеля в дистиллированной воде. Пропитку, сушку и прокалку проводят аналогично первой стадии пропитки.

В результате получают каталитически-сорбционный материал, имеющий объем пор 0,4 см3/г, коэффициент механической прочности 4,2 кг/мм, удельную поверхность 240 м2/г и средний диаметр пор 5,8 нм.

Пример 2

Пример иллюстрирует способ приготовления каталитически-сорбционного материала с использованием в качестве компонента носителя мезопористого материала Al-TUD. Для приготовления носителя используют оксид алюминия в виде бемита в количестве 70% масс. и мезопористый материал Al-TUD в количестве 30% масс. Материал типа Al-TUD получают по стандартной методике, описанной в работе [Wang J. et al. TUD-C: A tunable, hierarchically structured mesoporous zeolite composite // Microporous Mesoporous Mater. 2009. Vol. 120, №1-2. P. 19-28.]. Источником кремния для синтеза служит тетраэтоксисилан, при этом материал получают в присутствии структурообразующих агентов, не являющихся ПАВ. В процессе синтеза не формируются мицеллы. Образование структуры силиката происходит вследствие специфического взаимодействия темплата и силанольных фрагментов, образующихся при гидролизе тетраэтоксисилана, а также силанольных фрагментов между собой.

Приготовление носителей, содержащих в прокаленном виде 35% масс. мезопористого материала Al-TUD и 65% масс. γ-Al2O3 осуществляют способом, аналогичным описанному в примере 1.

Пропитку полученного носителя по влагоемкости проводят аналогично описанной в примере 1.

В результате получают каталитически-сорбционный материал, имеющий объем пор 0,5 см3/г, коэффициент механической прочности 2,8 кг/мм, удельную поверхность 270 м2/г и средний диаметр пор 6,6 нм.

Пример 3

Пример иллюстрирует способ приготовления каталитически-сорбционного материала с использованием в качестве компонента носителя мезопористого материала MCF. Для приготовления носителя используют оксид алюминия в виде бемита в количестве 70% масс. и мезопористый материал MCF в количестве 30% масс. Материал типа MCF получают по стандартной методике, описанной в работе [Wang J. et al. TUD-C: A tunable, hierarchically structured mesoporous zeolite composite // Microporous Mesoporous Mater. 2009. Vol. 120, №1-2. P. 19-28.]. Источником кремния для синтеза служит тетраэтоксисилан, в качестве ПАВ - Pluronic P123. При этом в процессе синтеза используют 1,3,5-триметилбензол, который относят к т.н. «молекулам-расширителям» ПАВ. Это соединение аккумулируется в гидрофобной части мицеллы ПАВ и увеличивают ее диаметр. Таким образом, формируют мезопористые силикаты MCF, используя сочетание сополимера полиэтилен- и полипропиленгликоля и 1,3,5-триметилбензола.

В результате получают каталитически-сорбционный материал, имеющий объем пор 0,6 см3/г, коэффициент механической прочности 8,1 кг/мм, удельную поверхность 250 м2/г и средний диаметр пор 8,7 нм.

Пример 4

Пример иллюстрирует способ удаления хлороорганических соединений из легкой дизельной фракции с применением каталитически-сорбционных материалов, полученных по пр. 1-3. Каталитически-сорбционный материал загружают в стальной трубчатый реактор, при температуре 340-380°С и давлении водорода 4,0-6,0 МПа подают сырье, представляющее собой легкую дизельную фракцию, загрязненную органическими соединениями хлора, с объемной скоростью 1,0-4,0 ч-1 и водородсодержащий газ с объемным соотношением водорода к сырью 600:1. В продуктах реакции содержание хлора не превышает 0,3 мг/кг.

Эффективность работы каталитически-сорбционного материала для удаления соединений хлора из средних дистиллятов оценивалась в процессе гидрирования легкой дизельной фракции, содержащей 17 мг/кг хлора, путем пропускания водородсодержащего газа и сырья с объемным соотношением водорода к сырью 600:1 через неподвижный слой каталитически-сорбционного материала, загруженного в трубчатый реактор, с объемной скоростью 1,2,3 или 4 ч-1 при температурах 340-380°С под давлением 4,0 МПа, 5,0 МПа или 6,0 МПа, по остаточному содержанию хлора в продуктах реакции.

После 2 часов после начала подачи сырья отбирают «нулевую» пробу, затем еще через час отбирают целевую пробу и анализируют содержание хлора в продукте.

Результаты процесса удаления хлора из легкой дизельной фракции, проведенного с использованием образцов каталитически-сорбционного материала, соответствующих изобретению, представлены в таблице 1.

Из данных таблицы 1 следует, что заявляемый каталитически-сорбционный материал для удаления соединений хлора из средних дистиллятов, приготовленный заявленными способами, позволяет получить продукт с содержанием хлора не более 0,1 мг/кг. Степень удаления хлора при этом достигает 99,5%.

Стабильность каталитически-сорбционного материала оценивалась в процессе гидрирования легкой дизельной фракции, содержащей 21 мг/кг хлора, путем пропускания водородсодержащего газа и сырья с объемным соотношением водорода к сырью 600:1 через неподвижный слой каталитически-сорбционного материала, загруженного в трубчатый реактор, с объемной скоростью 2 ч-1 при температуре 340-380°С под давлением 5,0 МПа, по содержанию остаточной хлора в продуктах реакции. Результаты процесса удаления хлора из легкой дизельной фракции, проведенного с использованием образца каталитически-сорбционного материала по пр. 3, соответствующему изобретению, представлены в таблице 2.

Как следует из таблицы 2, каталитически-сорбционный материал в течение минимум 32 часов поддерживает активность в процессе удаления хлора.

Технический результат изобретения заключается в повышении эффективности удаления органических соединений хлора из средних нефтяных дистиллятов путем их превращения в хлороводород и углеводороды и сорбцию хлористого водорода на поверхности мезопористого материала, содержащего оксид магния и оксид никеля.

1. Способ приготовления каталитически-сорбционного материала для удаления хлора, включающий синтез инертного носителя, его пропитку растворами нитрата никеля и ацетата магния, в котором в качестве компонента носителя используют мезопористое соединение одного из типов: SBA-15, MCF, Al-TUD, в количестве 25-35% масс., которое добавляют к порошку бемита, пептизируют разбавленным раствором азотной кислоты, высушивают и прокаливают при 550°С.

2. Способ удаления хлороорганических соединений из легкой дизельной фракции, характеризующийся тем, что каталитически-сорбционный материал по п. 1 загружают в стальной трубчатый реактор, подают сырье при температуре 340-380°С и давлении водорода 4,0-6,0 МПа с объемной скоростью 1,0-4,0 ч-1, и водородсодержащий газ с объемным соотношением водорода к сырью 600:1.



 

Похожие патенты:

Изобретение относится к способу гидрооблагораживания предварительно обработанных триглицеридов жирных кислот (ТЖК) и прямогонной дизельной фракции при повышенной температуре и давлении водорода на сульфидных катализаторах MoS2/Al2O3 и NiMoS2/Al2O3 в две стадии, на первой из которых проводят гидроочистку прямогонной дизельной фракции в присутствии сульфидного NiMoS2/Al2O3 катализатора.

Изобретение относится к получению катализатора для гидродеметаллизации, содержащего: подложку оксида алюминия, активную гидрирующую-дегидрирующую фазу, содержащую по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор, причем указанный катализатор имеет: удельную поверхность SBET от 75 до 150 м2/г, полный объем пор от 0,55 до 0,85 мл/г, средний диаметр мезопор от 16 до 28 нм, объем мезопор от 0,50 до 0,90 мл/г, объем макропор менее 15% от полного объема пор, причем указанный способ включает по меньшей мере: a) первый этап осаждения по меньшей мере одного щелочного предшественника и по меньшей мере одного кислотного предшественника, причем по меньшей мере один из двух содержит алюминий, при значении pH от 8,5 до 10,5, глубине реакции на первом этапе от 5 до 13%, при температуре от 20 до 90°C и в течение 2-30 минут; b) этап нагревания; c) второй этап осаждения путем добавления в суспензию по меньшей мере одного щелочного предшественника и по меньшей мере одного кислотного предшественника, причем по меньшей мере один из щелочного или кислотного предшественника содержит алюминий, при значении pH от 8,5 до 10,5 и глубине реакции на втором этапе от 87 до 95%; d) этап фильтрации; e) этап сушки; f) этап формования; g) этап термообработки; h) этап пропитки, активной гидрирующей-дегидрирующей фазой подложки, полученной на этапе g).

Изобретение относится к способам совместного гидрооблагораживания триглицеридов жирных кислот и прямогонной дизельной фракции на сульфидных катализаторах с целью получения низкосернистых углеводородных фракций и может быть использовано в нефтеперерабатывающей промышленности.

Настоящее изобретение относится к способу обработки бензина, содержащего диолефины, олефины и сернистые соединения, в том числе меркаптаны, в котором: подают бензин в дистилляционную колонну (3), содержащую по меньшей мере одну реакционную зону (4), содержащую по меньшей мере один первый катализатор, содержащий подложку и по меньшей мере один элемент группы VIII, причем введение осуществляют на уровне ниже реакционной зоны (4), для взаимодействия по меньшей мере одной бензиновой фракции с катализатором из реакционной зоны (4) и превращения по меньшей мере части меркаптанов из указанной фракции в сернистые соединения путем реакции с диолефинами и получения десульфированного легкого бензина, отбираемого в голове указанной дистилляционной колонны (3); где способ дополнительно включает следующие стадии: отбирают промежуточную бензиновую фракцию на уровне выше реакционной зоны (4) и ниже верха дистилляционной колонны (3); в нижней части колонны отбирают тяжелый бензин, содержащий большинство сернистых соединений, приводят в контакт, в реакторе демеркаптанизации (13), указанную промежуточную бензиновую фракцию, возможно в присутствии водорода, со вторым катализатором в сульфидной форме, содержащим подложку, по меньшей мере один элемент, выбранный из группы VIII, и по меньшей мере один элемент, выбранный из группы VIB, причем содержание элемента группы VIII, выраженное на оксид, составляет от 1 и 30 % от общей массы катализатора, содержание элемента группы VIB, выраженное на оксид, составляет от 1 до 30 % от общей массы катализатора, чтобы получить поток, содержащий сульфиды; поток, выходящий из реактора демеркаптанизации, возвращают в дистилляционную колонну (3).

Настоящее изобретение предлагает подходящий для гидродесульфирования тяжелого дистиллятного топлива катализатор гидропереработки, его получение (варианты) и применение.

Изобретение относится к способу приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы на основе пеноникеля. Предложенный способ заключается в электролитическом осаждении цинка на пеноникель и термообработке в инертной среде.
Изобретение относится к селективным гетерогенным никелевым катализаторам гидрирования ненасыщенных углеводородов и сероочистки, к их способам получения и применения.
Изобретение относится к области катализа. Описан катализатор гидроочистки дизельных фракций, содержащий дисульфид молибдена, кобальт, никель или железо, псевдобемит γ-AlOOH, полученный из электровзрывного нитрида алюминия, который в качестве модифицирующей добавки содержит наноалмазы размером не более 20 нм, при следующем соотношении компонентов, % мас.: псевдобемит - 10, наноалмазы - 20, кобальт, никель или железо - 20-30, дисульфид молибдена - остальное.
Изобретение относится к промотированным катализаторам на смешанной подложке цеолит/алюмосиликат с малым содержанием макропор и к способам гидрокрекинга/гидроконверсии и гидроочистки, в которых они применяются.

Изобретение относится к технологии переработки и касается катализатора для гидрогенизационной конверсии глицерина в простые спирты, способа его приготовления и способа гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора.

Изобретение относится к композиции для систем постобработки выхлопного газа дизельных двигателей, бензиновых двигателей сгорания, двигателей на обедненной смеси и электростанций, имеющей формулу Се1-a-b-cNaMbDcOx (I), в которой М обозначает калий, N обозначает Вi и/или Sb, D присутствует или отсутствует, и если присутствует, то выбирается из одного или нескольких элементов из Mg, Ca, Sr, Ba; Y, Lа, Рr, Nd, Sm, Gd, Еr; Fе, Zr, Nb, Аl; а является числом в интервале 0<а≤0,9, b является числом в интервале 0<b≤0,3, с является числом в интервале 0≤с≤0,2; а плюс b плюс с равно <1, и х является числом в интервале 1,2≤х≤2.
Настоящее изобретение относится к способам гидрообработки углеводородного сырья, имеющего средневзвешенную температуру (TMP), превышающую 380°C. Описан способ гидрообработки по меньшей мере одного углеводородного сырья, имеющего средневзвешенную температуру (TMP), превышающую 380°C, причем способ осуществляют при температуре в интервале от 250 до 430°C, при общем давлении в интервале от 4 до 20 МПа, при соотношении объема водорода и объема углеводородного сырья в интервале от 200 до 2000 литров на литр и при часовой объемной скорости (VVH), определенной как отношение объемного расхода жидкого углеводородного сырья к объему катализатора, загруженного в реактор, в интервале от 0,5 до 5 ч-1, причем в способе применяют по меньшей мере один катализатор, содержащий по меньшей мере один металл из группы VIB и/или по меньшей мере один металл из группы VIII Периодической системы элементов, и носитель, содержащий аморфный мезопористый оксид алюминия, причем указанный оксид алюминия получают, осуществляя по меньшей мере следующие стадии: a) по меньшей мере одну первую стадию осаждения оксида алюминия в водной реакционной смеси исходя по меньшей мере из одного основного предшественника, выбранного из алюмината натрия, алюмината калия, аммиака, гидроксида натрия и гидроксида калия, и по меньшей мере из одного кислотного предшественника, выбранного из сульфата алюминия, хлорида алюминия, нитрата алюминия, серной кислоты, соляной кислоты и азотной кислоты, cтадию нагревания полученной после стадии a) суспензии, осуществляемую между стадией a) и второй стадией а') осаждения, которую осуществляют при температуре в интервале от 20 до 90°C в течение промежутка времени от 7 до 45 минут; a’) вторую стадию осаждения, которую осуществляют между первой стадией осаждения a) и стадией b) термической обработки, указанная вторая стадия a’) осаждения осуществляется путем добавления к суспензии по меньшей мере одного основного предшественника и одного кислотного предшественника, b) стадию термической обработки суспензии, полученной после стадии a’), при температуре в интервале от 50 до 200°C в течение промежутка времени от 30 минут до 5 часов; c) стадию фильтрования суспензии, полученной после стадии b) термической обработки, с последующим осуществлением по меньшей мере одной стадии промывки полученного геля; d) стадию сушки геля оксида алюминия, полученного после стадии c), для получения порошка; e) стадию формования порошка, полученного после стадии d), для получения сырого материала; f) стадию термической обработки сырого материала, полученного после стадии e), при температуре в интервале от 500 до 1000°C, необязательно в токе воздуха, содержащего до 60 об.% воды.

Изобретение относится к области химии, нефтехимии и нефтепереработки, в частности, к способу приготовления катализаторов для получения синтез-газа реакцией углекислотной конверсии метана.

Изобретение относится к способу приготовления катализатора селективного гидрирования фурфурола до фурфурилового спирта, который заключается в том, что смешивают кристаллогидраты нитратов меди, железа и алюминия, далее полученную смесь кристаллогидратов нитратов меди, железа и алюминия сплавляют при температурах 100-180°С до полного удаления воды, после чего осуществляют указанную прокалку при температурах 300-550°С.

Настоящее изобретение относится к области гидрообработки углеводородного сырья типа газойля. Описан способ гидрообработки по меньшей мере газойлевой фракции, имеющей средневзвешенную температуру (TMP) в интервале от 240 до 350°C, причем способ осуществляют при температуре в интервале от 250 до 400°C, при общем давлении в интервале от 2 до 10 МПа, при соотношении объема водорода и объема углеводородного сырья в интервале от 100 до 800 литров на литр и при часовой объемной скорости (VVH), определенной как отношение объемного расхода жидкого углеводородного сырья к объему катализатора, загруженного в реактор, в интервале от 1 до 10 ч-1, причем в способе применяют по меньшей мере один катализатор, содержащий по меньшей мере один металл из группы VIB и/или по меньшей мере один металл из группы VIII Периодической системы элементов и носитель, содержащий аморфный мезопористый оксид алюминия, причем указанный оксид алюминия получают, осуществляя по меньшей мере следующие стадии: a) по меньшей мере одну первую стадию осаждения оксида алюминия в водной реакционной смеси исходя по меньшей мере из одного основного предшественника, выбранного из алюмината натрия, алюмината калия, аммиака, гидроксида натрия и гидроксида калия, и по меньшей мере из одного кислотного предшественника, выбранного из сульфата алюминия, хлорида алюминия, нитрата алюминия, серной кислоты, соляной кислоты и азотной кислоты, cтадию нагревания полученной после стадии a) суспензии, осуществляемую между стадией a) и второй стадией а') осаждения, которую осуществляют при температуре в интервале от 20 до 90°C в течение промежутка времени от 7 до 45 минут; a’) вторую стадию осаждения, которую осуществляют между первой стадией осаждения a) и стадией b) термической обработки, b) стадию термической обработки суспензии, полученной после стадии a), при температуре в интервале от 50 до 200°C в течение промежутка времени от 30 минут до 5 часов, что обеспечивает получение геля оксида алюминия; c) стадию фильтрования суспензии, полученной после стадии b) термической обработки, с последующим осуществлением по меньшей мере одной стадии промывки полученного геля; d) стадию сушки геля оксида алюминия, полученного после стадии c), для получения порошка; e) стадию формования порошка, полученного после стадии d), для получения сырого материала; f) стадию термической обработки сырого материала, полученного после стадии e), при температуре в интервале от 500 до 1000°C, необязательно в токе воздуха, содержащего до 60 об.% воды.
Изобретение относится к способу получения высокодисперсного каталитически активного материала для очистки газовых выбросов от монооксида углерода, заключающемуся в соосаждении гидроксидов церия, и олова, и меди при мольном соотношении Ce:Sn:Cu = 8:1:1 или гидроксидов церия, и олова, и марганца в мольном соотношении Ce:Sn:Mn = 8:1:1 гидроксидом аммония в изопропиловом спирте с последующей термической обработкой в стационарных условиях при температуре 500-600˚С.

Изобретение относится к катализатору окисления для обработки выхлопных газов, производимых дизельным двигателем, включающему носитель и каталитический слой, включающий первый подложечный материал носителя, палладий и платину.

Изобретение относится к области химической технологии, а именно к производству новых форм катализаторов в виде композитов, содержащих каталитически активные частицы (оксиды хрома, никеля или кобальта, покрытые диоксидом титана) в виде слоистых полых сфер, для процессов превращения углеводородов, в том числе глубокого окисления ароматических углеводородов.

Изобретение относится к способу получения катализатора гидроконверсии с бимодальной пористой структурой, с полностью смешиваемой активной фазой, содержащего по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор и матрицу из обожженного оксида алюминия, имеющую содержание оксида алюминия более или равное 90% и содержание оксида кремния не более 10% по весу в эквиваленте SiO2 относительно массы матрицы, включающий этапы (а)–(j), раскрытые в п.1 формулы изобретения.

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций. Предлагается способ получения катализатора деметаллизации нефтяных фракций путем предварительного приготовления носителя катализатора осаждением гидроксида алюминия из раствора азотнокислого алюминия или алкоксида алюминия в присутствии водной дисперсии темплата макропор с диаметром частиц 0,1-2,0 мкм в количестве 10-35% масс.
Наверх