Способ получения наноразмерных частиц кальция в водной среде

Изобретение относится к области химии и нанотехнологии, а именно к способу получения наноразмерных частиц кальция в водной среде, включающий помещение в дистиллированную воду, находящуюся в емкости, двух электродов, один из которых выполнен из золота или платины с нейтральным водородным числом, пропускание между электродами стабилизированного постоянного электрического тока силой 2 А, отличающийся тем, что в качестве второго электрода используют золотую или платиновую пластину, электроды между собой разделяют микропористой мембраной, при этом процесс электролитического разложения проводят в присутствии катализатора, роль катализатора выполняет смесь раствора лимонной кислоты C6H8O7 в концентрации 0,25-5 мас.% или 0,25-5 мол. % и рабочего раствора Са(ОН)2 из расчета концентрации 20-40 мас.% или 20-40 мол. %, при соотношении катализатора к общему объему дистиллированной воды 1:100. Изобретение обеспечивает новый способ получения наночастиц кальция, обладающих нечувствительностью к свету, кинетической и термодинамической устойчивостью, зарядом у каждой частицы, препятствующим слипанию частиц, малой константной нестойкостью. 1 ил.

 

Изобретение относится к области получения наноразмерных частиц кальция, распределенных в водной среде и стабилизированных соединениями (стабилизаторами).

Наноразмерные частицы кальция представляют собой агломераты атомарного кальция размерами 1-100 нм, поверхность которых окружена слоем молекул стабилизаторов, что позволяет достигать времен «жизни» системы вода/стабилизаторы/ наноразмерные частицы кальция не менее 12 месяцев.

Наноразмерные кальцийсодержащие частицы в разных модификациях широко используются в медицинских исследованиях и разработке новых методов лечения/ диагностики. Так, существуют многочисленные публикации по биомедицинским разработкам разных вариантов наноразмерных частиц фосфата кальция. Его используют для создания костнозамещающих материалов, антибактериальных субстратов, осуществления вспомогательных микробиологических и вирусологических методик, лечения опухолей и др. Реже выполняются работы по исследованию применимости для сходных целей феррита кальция (CaFe2O4), кальция сульфат-гемигидрата, карбоната кальция (СаСО3). Большое значение имеют наночастицы из перечисленных солей кальция в стоматологии, для создания новых замещающих дентин и зубные коронки материалов.

Недостатками перечисленных способов получения кальцийсодержащих частиц является то, что в них кальций представлен в составе солей и производный соединений, а не в чистом виде.

Наиболее перспективными областями биомедицинского применения наноразмерных мицеллярных дисперсных систем кальция являются производство твердых костнозамещающих материалов в ортопедии, а так же эмаль- и дентин- замещающих материалов в стоматологии. Так же благодаря стабилизированным водным мицеллярным растворам частиц кальция возможно удешевить получение производных наночастиц кальциевых солей, которые в гораздо большей степени изучены для биомедицинского применения.

Ближайшим аналогом получения кальций-содержащих частиц являются методики, описанные Nakamura М et al. (2016) и представляющие собой физико-химическую копреципитацию с помощью пульсирующего лазерного излучения (библиографическая ссылка: Nakamura М, Oyane A et al. Physicochemical fabrication of antibac-terial calcium phosphate submicrospheres with dispersed silvernanoparticles via coprecipitation and photoreduction under laser irradiation. Acta Biomater. 2016 Dec;46:299-307).

Недостатком методик Nakamura M et al. (2016) является трудоемкость, затратность в плане сырья и расходных материалов, необходимость дорогостоящего оборудования (источник пульсирующего лазерного излучения).

Известен метод получения наночастиц кальция карбоната со вставками метотрексата через поверхностную газовую диффузию по Dai CF et al. (2016) (библиографическая ссылка: Dai CF, Wang WY et al. Methotrexate intercalated calcium carbonate nanostructures: Synthesis, phase transformation and bioassay study. Mater Sci Eng С Mater Biol Appl. 2016 Dec 1;69: 577-83.).

Недостатком методик Dai CF et al. (2016) является трудоемкость, затратность в плане сырья и расходных материалов, необходимость дорогостоящего оборудования поверхностной газовой диффузии.

Получение наноразмерных частиц кальция в жидких средах состоит из 2-х основных операций:

1. Приготовление жидкой среды путем растворения стабилизаторов в органическом или неорганическом растворителе.

2. Выделение в полученную среду кальция в атомарной и/или ионной форме путем химических или электрохимических реакций с образованием наноразмерных частиц кальция.

Техническим результатом предлагаемого изобретения является упрощение и удешевление получения наноразмерных частиц кальция в водной среде с одновременным обеспечением нечувствительности к свету, кинетической устойчивости, термодинамической устойчивости, наличия у каждой частицы заряда, препятствующего слипанию частиц малой константой нестойкости, мицеллярной формы - при уменьшении размеров, количество частиц увеличивается на порядки. При этом поверхность частиц возрастает. Чем больше число частиц и их суммарная поверхность, тем эффективнее действие, отсутствие острой токсичности, прозрачности, отсутствия вкуса и запаха.

Поставленный технический результат достигается тем, что происходит получение наноразмерных частиц кальция в водном растворе, включающее помещение в рабочую жидкую среду, находящуюся в емкости, двух электродов с нейтральным водородным числом, состав рабочей среды - раствор Са(ОН)2; при этом один из электродов выполнен из золота или платины, а между электродами пропускается стабилизированный электрический ток; в качестве второго электрода используют золотую или платиновую пластину, электроды между собой разделяют микропористой мембраной, при этом процесс электролитического разложения проводят в присутствии катализатора, роль которого выполняет лимонная кислота (C6H8O7).

Для рабочей жидкой среды - водный раствор Са(ОН)2 - и для добавляемого катализатора, в качестве которого выступает лимонная кислота (C6H8O7), должны быть обеспечены определенные рабочие концентрации раствора. Концентрация рабочей жидкой среды, раствора Са(ОН)2, может задаваться в диапазоне 20 - 40%, а концентрация катализатора лимонной кислоты (C6H8O7) может задаваться в диапазоне 0,25 - 5%, при этом в обозначенных процентах для рабочего раствора и для катализатора задается массовая доля растворяемого вещества.

Второй вариант: для рабочей жидкой среды - водный раствор Са(ОН)2 - и для добавляемого катализатора, в качестве которого выступает лимонная кислота (C6H8O7), должны быть обеспечены определенные рабочие концентрации раствора. Концентрация рабочей жидкой среды, раствора Са(ОН)2, может задаваться в диапазоне 20 - 40%, а концентрация катализатора лимонной кислоты (C6H8O7) может задаваться в диапазоне 0,25 - 5%, при этом в обозначенных процентах для рабочего раствора и для катализатора задается молярная доля растворяемого вещества.

Третий вариант: для рабочей жидкой среды - водный раствор Са(ОН)2 - и для добавляемого катализатора, в качестве которого выступает лимонная кислота (C6H8O7), должны быть обеспечены определенные рабочие концентрации раствора. Концентрация рабочей жидкой среды, раствора Са(ОН)2, может задаваться в диапазоне 20 - 40%, а концентрация катализатора лимонной кислоты (C6H8O7) может задаваться в диапазоне 0,25 - 5%, при этом в обозначенных процентах для рабочего раствора и для катализатора задается объемная доля растворяемого вещества.

Предлагаемый способ реализуется устройством, показанным на чертеже. Устройство, реализующее предлагаемый способ получения наноразмерных частиц кальция в водном растворе, состоит рабочей емкости 1, разделенной на 2 камеры: камеру 2 и камеру 3, разделенных между собой микропористой мембраной 4, соотношение камеры 2 к камере 3 составляет 10:1 по объему. Устройство снабжено общей крышкой 5, на которой расположены (жестко фиксированы либо раздвигаются по специальному пазу с метками-фиксаторами - фиксаторы и метки на чертеже не показаны) два электрода 6 и 7, выполненные из золота или платины. Масса электродов по отношению к объему рабочей емкости 1 составляет 1:50 (на 1000 мл общего объема, общий вес электродов 20 г), соотношение электродов между собой 1:4, электрод с большим весом 7 монтируется на крышке над камерой 2, электрод с меньшим весом 6 над камерой 3. К электроду 7 присоединяется диод 8, например, Д 240, на оба электрода подается напряжение 220 В. Для выпрямления переменного тока вместо диода 8, может быть использован диодный мостик - диодный мостик на чертеже не показан. Позицией 9 обозначен рабочий раствор.

В камеру 2 добавляется катализатор - лимонная кислота C6H8O7 из расчета концентрации 0,25 - 5% и Са(ОН)2 из расчета концентрации 20 - 40% (концентрация может быть применена из диапазона данных значений, которые приводятся либо в массовых, либо в молярных, либо в объемных долях). В камеру 3 - простая дистиллированная вода. Расстояние между пластинами устанавливается посредством их раздвижения по пазу скольжения и фиксации на метках-фиксаторах (паз и метки-фиксаторы на чертеже не показаны) в процессе работы по показаниям силы тока: при температуре рабочего раствора в камере 2 30°С сила тока должна составлять 2 А, при повышении силы тока расстояние между электродами увеличивается пользователем.

Простота получения наноразмерных частиц кальция в водной среде с одновременным обеспечением нечувствительности к свету, кинетической устойчивости, термодинамической устойчивости, наличия у каждой частицы заряда, препятствующего слипанию частиц малой константой нестойкости, мицеллярной формы - при уменьшении размеров, количество частиц увеличивается на порядки, При этом поверхность частиц возрастает, чем больше число частиц и их суммарная поверхность, тем эффективнее действие. Дешевизна, безопасность, органолептические преимущества получаемой жидкой дисперсной системы (прозрачность, отсутствие вкуса и запаха), высокая мембранная проницаемость являются достоинством и преимуществом предлагаемого технического решения по сравнению с прототипом.

Способ получения наноразмерных частиц кальция в водной среде, включающий помещение в дистиллированную воду, находящуюся в емкости, двух электродов, один из которых выполнен из золота или платины с нейтральным водородным числом, пропускание между электродами стабилизированного постоянного электрического тока силой 2 А, отличающийся тем, что в качестве второго электрода используют золотую или платиновую пластину, электроды между собой разделяют микропористой мембраной, при этом процесс электролитического разложения проводят в присутствии катализатора, роль катализатора выполняет смесь раствора лимонной кислоты C6H8O7 в концентрации 0,25-5 мас.% или 0,25-5 мол. % и рабочего раствора Са(ОН)2 из расчета концентрации 20-40 мас.% или 20-40 мол. %, при соотношении катализатора к общему объему дистиллированной воды 1:100.



 

Похожие патенты:
Изобретение относится к способу электрохимического выделения галлия из щелочно-алюминатных растворов глиноземного производства процесса Байера. Предлагается способ получения галлия из щелочно-алюминатных растворов глиноземного производства, включающий подготовку исходной смеси из маточного и оборотного растворов с введением в нее раствора цинка, проведение четырехстадийного электролиза.

Изобретение относится к области радиохимической технологии и может быть использовано в технологии переработки отработавшего ядерного топлива (ОЯТ). Способ извлечения металлов платиновой группы из осадков после осветления продукта кислотного растворения волоксидированного отработавшего ядерного топлива включает окислительную трансформацию осадка, восстановительную обработку.
Изобретение относится к переработке концентрата РЗМ с выделением из него церия методом электроокисления, а именно к способу электрохимического окисления церия (III) в нитратных растворах при переработке концентратов редкоземельных металлов (РЗМ), с последующей экстракцией или осаждением карбоната или оксалата церия.
Изобретение относится к регенерации вторичного металлического сырья, в частности к переработке металлических отходов ренийсодержащих жаропрочных сплавов на основе никеля.

Изобретение относится к области переработки отходов полупроводниковых соединений на основе галлия. Способ заключается в том, что отходы смешивают с селитрой и содой в соотношении 1:(1-1,25):(1-1,25), теоретически необходимом для реакции окисления.

Изобретение относится к способу электрохимического выделения галлия из шелочно-алюминатных растворов глиноземного производства процесса Байера. Способ включает подготовку исходной смеси смешением маточного и оборотного растворов в соотношении, равном 1: (0,8÷0,9), при постоянном перемешивании и обрабатывают воздухом в количестве 0,4-0,6 нм3/час на 1 м3 смеси при температуре 70-90°C, а затем вводят известь в количестве 28-30 кг CаОакт.
Изобретение относится к области металлургии редких элементов, а именно к способам глубокой очистки висмута от радиоактивных загрязнений 210Ро при использовании солянокислых растворов.
Изобретение относится к области гидрометаллургии редких элементов, а именно к способам глубокой очистки висмута от Ag, Te, Po при использовании солянокислых растворов.
Изобретение относится к области гальваностегии, в частности к электрохимическому осаждению плутония, америция и кюрия из органической среды, и может быть использовано для переработки облученного ядерного топлива, изготовления изотопных источников актинидов, а также для радиационного мониторинга объектов окружающей среды и технологических проб.
Изобретение относится к способу электрохимической переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал и другие ценные металлы, входящие в состав перерабатываемого сплава.

Изобретение относится к неорганической химии и может быть использовано при получении люминофоров. В азотной кислоте растворяют карбонат щелочного металла, взятый в 50-100 %-ном избытке по сравнению со стехиометрическим, и оксид лантана.

Изобретение относится к устройству для обработки воды для бытовых нужд, выполненному с возможностью временного подсоединения к выпускному отверстию водопроводного крана для обеспечения непрерывной подачи обработанной воды, при этом вода, подлежащая обработке, направляется радиально через его внутреннюю часть.

Изобретение относится к системам очистки жидкости, в частности воды, с применением фильтрующих модулей с намывным слоем и может быть использовано в различных областях техники, например, для промышленной фильтрации различных суспензий и технологических растворов, при фильтрации напитков, очистке воды от нефтепродуктов и т.д.

Изобретение относится к области очистки воды, технологических жидкостей, смазочно-охлаждающих жидкостей, моющих растворов от содержащихся в них взвешенных примесей и может быть использовано на станциях водоподготовки и промышленных производствах.

Изобретение относится к способам регенерации свободного цианида из вод, содержащих тиоцианаты, цианиды и тяжелые металлы. Способ регенерации свободного цианида из вод, содержащих тиоцианаты и тяжелые металлы, включает селективное окисление в кислых средах, улавливание синильной кислоты из отходящих газов в щелочной поглотитель, подщелачивание вод после их окислительной обработки.

Изобретение может быть использовано в неорганической химии. Способ получения нанодисперсных оксидов металлов включает формирование реакционной смеси путем внесения нитратов металлов и карбамида в водную среду в стехиометрическом соотношении.

Изобретение относится к технологии получения новых многофункциональных фторидных материалов для фотоники и ионики твердого тела, оптического материаловедения, магнитооптики, систем оптической записи информации.

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления плотной и пористой керамики, применяющейся в качестве скэффолдов в инженерии костной ткани, мишеней для создания покрытий на металлических имплантатах в хирургии и стоматологии и в других областях медицины.

Изобретение относится к переработке бериллийсодержащих рудных концентратов с получением сульфата бериллия. Шихту приготавливают из расчета получения массового соотношения SiO2/CaO в смеси концентратов, равного 2,25÷2,45, а добавку карбоната натрия назначают из расчета получения массового соотношения SiO2/(CaO+Na2O) в шихте, равного 1,45÷1,65.

Настоящее изобретение относится к способам получения коллоидных частиц оксида металла (варианты), в частности диоксида кремния, а также к самим коллоидным частицам.

Изобретение относится к области нанотехнологии, а именно нанотехнологии интерактивного взаимодействия, датчиков или приведения в действие, например, квантовых точек в качестве биомаркеров.
Наверх