Способ измерения длины колонны труб при спускоподъёмных операциях

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения длины колонны труб оптическими методами. Технической задачей предлагаемого изобретение является создание способа измерения длины труб при спускоподъёмных операциях, упрощающего использование за счет применения для измерений лазерного длинномера и не зависящего от внешних факторов. Способ включает измерение каждой трубы и сложение длин каждой из труб при помощи контроллера, регистрирующего длины каждой трубы. Для измерения длины трубы на мачте спускоподъёмного механизма закрепляют лазерный длинномер так, что при вертикальном расположении поднимаемой трубы луч лазера длинномера проходит внутри нее по всей длине. Каждую трубу снизу оборудуют защитным колпачком с отражающим луч лазера материалом внутри при измерении, при этом талевый блок спускоподъёмного механизма снабжают электромагнитным пусковым устройством, включающим длинномер при вертикальном расположении измеряемой трубы. Перед каждой установкой спускоподъемного механизма проводят контрольные измерения и калибровку контроллера для получения максимально точных результатов. После измерения длины трубы защитный колпачок снимают перед соединением ее с колонной уже спущенных труб и/или спуском в скважину.

 

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения длины колонны труб оптическими методами.

Способ измерения длины труб с открытыми концами (патент RU №2321827, МПК G01B 17/00, опубл. 10.04.2008 в Бюл. № 10), основанный на измерении интервала времени прохождения акустического импульса по воздушной полости внутри трубы до конца трубы и обратно, отличающийся тем, что интервал времени фиксируют между пиком с максимальной амплитудой в первом эхо-импульсе и пиком с максимальной амплитудой, противоположной полярности в следующем эхо-импульсе.

Недостатком данного способа является невозможность использования в полевых условиях, так как любые шумовые помехи резко влияют на точность измерения.

Известен также способ измерения длины колонны длинномерных тел (патент RU №2187638, МПК Е21В 47/04, опубл. 20.08.2002 в Бюл. № 23), соединяемых между собой и спускаемых в скважину канатной лебедкой, снабженной измерителем веса, включающий измерение длины колонны с учетом ее удлинения под собственным весом, причем в процессе измерения длины колонны осуществляют циклический подсчет числа оборотов фрикционно связанных с канатом лебедки мерных роликов, начиная с первого длинномерного тела, спускаемого в скважину без учета его веса, последующий счет циклов ведут при наличии нагрузки на канате лебедки, равной весу не менее чем двух длинномерных тел, соединяемых в колонну, а съем показаний осуществляют, по крайней мере, с двух мерных роликов, причем в каждом цикле засчитывают показания мерного ролика, завершившего оборот первым.

Недостатками данного способа являются сложность применения и низкая надежность из-за большого количества механических точно подгоняемых деталей и низкая точность измерения, так как не учитываются растяжение тросов под весом труб и возможность изменения веса, связанная с заклиниванием, зацепами в скважине, а также под влиянием внешних факторов (дождь, ветер и т.п.).

Способ определения длины колонны труб при спускоподъемных операциях в скважине (патент RU №2211921, МПК Е21В 47/00, опубл. 10.09.2003 в Бюл. № 25), включающий определение длины колонны труб сложением длин каждой из труб, причем длину каждой трубы определяют измерением ее веса на крюке грузоподъемной установки и делением полученного веса на вес погонного метра этой трубы, при этом используют контроллер, в память которого заранее помещают значения веса погонного метра каждой трубы.

Недостатками данного способа являются сложность применения из-за постоянного использования устьевого индикатора веса и низкая точность измерения, так как не учитываются возможность применения труб с разным весом погонного метра и возможность изменения веса, связанная с заклиниванием, зацепами в скважине, а также под влиянием внешних факторов (дождь, ветер и т.п.).

Технической задачей предполагаемого изобретение является создание способа измерения длины труб при спускоподъёмных операциях, упрощающего использование за счет применения для измерений лазерного длинномера и не зависящего от внешних факторов.

Техническая задача решается способом измерения длины колонны труб при спускоподъёмных операциях, включающим измерение каждой трубы и сложение длин каждой из труб при помощи контроллера, регистрирующего длины каждой трубы.

Новым является то, что для измерения длины трубы на мачте спускоподъёмного механизма закрепляют лазерный длинномер так, что при вертикальном расположении поднимаемой трубы луч лазера длинномера проходит внутри нее по всей длине, каждую трубу снизу оборудуют защитным колпачком с отражающим луч лазера материалом внутри при измерении, при этом талевый блок спускоподъёмного механизма снабжают электромагнитным пусковым устройством, включающим длинномер при вертикальном расположении измеряемой трубы, перед каждой установкой спускоподъемного механизма проводят контрольные измерения и калибровку контроллера для получения максимально точных результатов, после измерения длины трубы защитный колпачок снимают перед соединением ее с колонной уже спущенных труб и/или спуском в скважину.

Способ измерения длины колонны труб при спускоподъёмных операциях включает в себя измерение длины каждой трубы. Для этого с условиях мастерской или завода к мачте спускоподъёмного механизма (например, мобильная подъемная скважинная установка, вышка или т.п.) закрепляют лазерный длинномер так, что при вертикальном расположении поднимаемой трубы луч лазера длинномера проходит внутри нее по всей длине. При этом талевый блок спускоподъёмного механизма снабжают электромагнитным пусковым устройством (магнитом, катушкой или т.п., проходящими через электромагнитный пускатель любой известной конструкции), включающим длинномер при вертикальном расположении измеряемой трубы. Проводят контрольные измерения и калибровку контроллера для получения максимально точных результатов. Для этого поднимают талевым блоком спускоподъёмного механизма в вертикальное положение эталонную трубу с нижним защитным колпачком, оснащенным отражающим луч лазера материалом внутри, проводят измерение лазерным дальномером длины, результаты которого передаются на контроллер (специальный пульт управления, ноутбук или компьютер со специальной программой или т.п.). Полученные результаты длины корректируют в соответствии с известной длиной эталонной трубы. Ошибки могут быть связаны с неточностью установки лазерного дальномера и пускового устройства на талевом блоке. Проводят контрольные измерения длины эталонной трубы, после совпадений получаемых результатов с эталонными значениями. Переходят к спуску труб, которые предварительно снизу оборудуют защитным колпачком с отражающим луч лазера материалом внутри. Последовательно проводят спуск труб с измерением в автоматическом режиме длины каждой лазерным длинномером, луч которой отражается от внутреннего материала защитного колпачка дает точные измерения длины (на практике - точность составила 0,02 мм) за доли секунд (на практике - 0,1 сек). Полученная информация сохраняется в контроллере и автоматически суммируется с предыдущими измеренными длинами труб. После измерения длины трубы защитный колпачок снимают перед соединением (скручиванием при помощи специального ключа или устьевого ротора) ее с колонной уже спущенных труб, с которыми суммируются длины, и/или спуском в скважину (первую трубу в колонне спускают без скручивания). Так как измерения производятся по осевому отверстию трубы, то влияние внешних фактором сводится практически к нулю. А автоматизация процесса упрощает работу обслуживающей смены, уменьшая влияние «человеческого фактора».

Предлагаемый способ измерения длины труб при спускоподъёмных операциях позволяет упростить использование за счет применения для измерений лазерного длинномера в автоматическом режиме и не зависит от внешних факторов.

Способ измерения длины колонны труб при спускоподъёмных операциях, включающий измерение каждой трубы и сложение длин каждой из труб при помощи контроллера, регистрирующего длины каждой трубы, отличающийся тем, что для измерения длины трубы на мачте спускоподъёмного механизма закрепляют лазерный длинномер так, что при вертикальном расположении поднимаемой трубы луч лазера длинномера проходит внутри нее по всей длине, каждую трубу снизу оборудуют защитным колпачком с отражающим луч лазера материалом внутри при измерении, при этом талевый блок спускоподъёмного механизма снабжают электромагнитным пусковым устройством, включающим длинномер при вертикальном расположении измеряемой трубы, перед каждой установкой спускоподъемного механизма проводят контрольные измерения и калибровку контроллера для получения максимально точных результатов, после измерения длины трубы защитный колпачок снимают перед соединением ее с колонной уже спущенных труб и/или спуском в скважину.



 

Похожие патенты:

Изобретение относится к вычислительной технике. Технический результат - повышение эффективности и достоверности геодезического мониторинга.

Изобретение относится к измерительной технике и может быть использовано в координатно-измерительных системах, устройствах для формирования объемных изображений. Заявленный фотограмметрический способ измерения расстояний вращением цифрового фотоаппарата заключается в горизонтировании фотоаппарата, так чтобы его плоскость снимка располагалась вертикально, формировании на ней двух изображений объектов, получаемых до и после поворота фотоаппарата вокруг вертикальной оси, проходящей через точку пересечения плоскости снимка с главной оптической осью фотоаппарата, на заданный угол.

Изобретение относится к области контрольно-измерительной техники импульсных лазерных дальномеров. Универсальная установка для проверки лазерного дальномера (ЛД) содержит ослабитель мощности лазерных импульсов проверяемого ЛД, устройство формирования стартового импульса, устройство сопряжения, персональный компьютер (ПК), источник питания лазерного излучателя, параболическое зеркало, визуализатор, телевизионную камеру, сопряженную с ПК и визуализатором, светодиод с диафрагмой, лазерные диоды с оптическими ослабителями излучения для длин волн λ1 и λ2, цифровую плату, сопряженную с лазерными диодами и ПК, блок фотоприемников с ослабителями, телескопическую систему, зеркальный шарнир, измеритель энергии излучения, сопряженный с ПК, осциллограф.

Изобретение относится к военной технике, а именно к аппаратуре лазерного целеуказания и дальнометрирования. Лазерный целеуказатель-дальномер (далее ЛЦД) содержит приемопередатчик 1, в корпусе которого расположены приемно-визирный 11 и излучающий 12 каналы, систему наведения 2 с приводами поворота платформы 14 вокруг вертикальной и горизонтальной осей и измерителями горизонтального угла и угла места, блок питания, треногу 3, цепь 6, талреп 7, якорь 8, карабин 9 и шуруп с петлей 10, причем опорный элемент 18 треноги 3 выполнен с шаровой направляющей 19 и возможностью крепления цепи 6, при этом стол 15 с зажимным устройством 4 установлен на шаровой направляющей 19 с возможностью поворота на 360° и наклона на угол до 90° и фиксацией относительно последней, при этом талреп 7 одним своим концом в виде крюка предназначен для зацепления с любым звеном цепи 6, а другим концом посредством карабина 9 - с якорем 8 или шурупом с петлей 10.

Изобретение относится к области лесного хозяйства и может быть использовано для отведения лесосек при заготовке древесины. Способ отвода границ лесосек заключается в использовании приемника спутниковой навигационной системы (СНС) для определения координат опорных точек – визиров лесосек и привязки их к местности, магнитного компаса (буссоли), деляночных столбов и капсул с радиометками для обозначения границ лесосек с техническими приспособлениями для выполнения работ по разметке границ лесосек.

Изобретение относится к измерительной технике и может найти применение для простого и быстрого измерения площадей потолка и определения формы потолка на основе сканирования близпотолочной поверхности стен внутри помещений.

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит передающий канал, включающий лазерный излучатель с передающим объективом и схемой запуска, и приемный канал, включающий фотоприемное устройство с приемным объективом.

Изобретение относится к точной механике и может быть использовано для контроля качества изготовления изделий; оцифровки созданного вручную дизайн-макета изделия, как основы для дальнейшей проработки; представления удаленных экспертов результатов разрушающих испытаний, последствий аварий и катастроф, воздействий взрывов; визуализации участков местности с естественными формами рельефа; криминалистов, археологов.

Изобретение относится к информационно измерительным комплексам и системам управления боевыми летательными аппаратами (ЛА). Технический результат - расширение функциональных возможностей прицельных систем путем синтеза автоматической процедуры прицеливания по подвижной наземной цели для обеспечения эффективного применения неуправляемых авиационных средств поражения (АСП).

Изобретение относится к области геодезического контроля и может быть использовано для определения и восстановления положения горизонтальной оси любого сложного инженерного линейного объекта.

Устройство может быть использовано в метрологии и приборостроении. Устройство имеет корпус, опорную шайбу, прижимную шайбу и винт.

Способ может быть использован для измерений угловых параметров зеркальных и призменных уголковых отражателей. В способе пучок ПСЛ, направленный из автоколлиматора на выбранную зону входного/выходного окна УО, предварительно пропускают через окно в плоском зеркале.

Изобретение относится к измерительной технике, а именно к средствам измерения угловых перемещений. Волоконно-оптический датчик угла поворота состоит из микроконтроллера, лазерного диода, оптического делителя мощности, фотодетектора, двух отрезков оптического волокна, свернутых в полукольца и оптически соединяющих лазерный диод с фотодетекторами.

Изобретение относится к области технологии проведения монтажа роторных или иных машин и предназначено для измерения относительного положения осей валов. Приемное устройство для измерения положения лазерного луча линейной светочувствительной матрицей в плоскости матрицы, состоящее из линейной светочувствительной матрицы и оптической системы, располагающейся параллельно указанной матрице, обеспечивающей развертку луча в горизонтальную линию.

Прибор может быть использован для измерения угловых координат положения осей космических аппаратов относительно астроориентиров. Прибор содержит бленду, канал геометрического эталона (КГЭ) и приемное устройство, включающее объектив и фотоприемник с вычислительным блоком.
Изобретение относится к области проведения измерений. Способ определения вертикальности протяженной конструкции заключается в том, что на поверхности конструкции устанавливают источник и приемник лазерного излучения, вертикальность установки конструкции определяют по показаниям приемника лазерного излучения.

Устройство для формирования изображения зеркальных отражений от роговицы пользователя устройства и от оптического приспособления для глаз, носимого пользователем, содержит первую камеру, выполненную с возможностью захвата изображения роговицы и оптического приспособления для глаз, средство обработки, выполненное с возможностью получения первого изображения от первой камеры, идентификации, путем анализа первого изображения, отражения от роговицы и отражения от отражающей поверхности оптического приспособления для глаз, и определения оптического преобразования, представляющего собой отражение от роговицы, и оптического преобразования, представляющего собой отражение от отражающей поверхности оптического приспособления для глаз.

Изобретение относится к области измерительной техники и может быть использовано для определения углового положения подвижных объектов при радиолокационных измерениях.

Изобретение предназначено для определения угла скручивания контролируемого объекта относительно некоторой базы в различных отраслях промышленности, в частности в телескопо- и ракетостроении.

Группа изобретений относится к измерительной технике и может быть использована для измерения абсолютных величин линейных перемещений в различных отраслях машиностроения.

Настоящее изобретение относится к устройствам и способам измерения струи лака для процесса лакировки электронных узлов. Оптический датчик для измерения центрального положения и ширины лака содержит поле обзора шириной, большей, чем ожидаемая ширина струи, и выход для выведения сигнала, соответствующего ширине и центральному положению струи.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения длины колонны труб оптическими методами. Технической задачей предлагаемого изобретение является создание способа измерения длины труб при спускоподъёмных операциях, упрощающего использование за счет применения для измерений лазерного длинномера и не зависящего от внешних факторов. Способ включает измерение каждой трубы и сложение длин каждой из труб при помощи контроллера, регистрирующего длины каждой трубы. Для измерения длины трубы на мачте спускоподъёмного механизма закрепляют лазерный длинномер так, что при вертикальном расположении поднимаемой трубы луч лазера длинномера проходит внутри нее по всей длине. Каждую трубу снизу оборудуют защитным колпачком с отражающим луч лазера материалом внутри при измерении, при этом талевый блок спускоподъёмного механизма снабжают электромагнитным пусковым устройством, включающим длинномер при вертикальном расположении измеряемой трубы. Перед каждой установкой спускоподъемного механизма проводят контрольные измерения и калибровку контроллера для получения максимально точных результатов. После измерения длины трубы защитный колпачок снимают перед соединением ее с колонной уже спущенных труб иили спуском в скважину.

Наверх