Способ повышения интенсивности люминесценции оксидных диэлектриков



Способ повышения интенсивности люминесценции оксидных диэлектриков
Способ повышения интенсивности люминесценции оксидных диэлектриков
C01P2006/90 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2714811:

Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)

Изобретение может быть использовано в фотонике, лазерной технике и оптоэлектронике при изготовлении лазерных фотоприемников, оптически активных слоёв фотолюминесцентных, катодолюминесцентных и электролюминесцентных устройств, амперометрических биосенсоров, хемилюминесцентных сенсоров, золь-гелевых стекол. Нанопорошок ZrO2 подвергают холодному одноосному прессованию при давлении 900–1100 кг⋅с/см2. Полученные компакты термообрабатывают в вакууме при температуре более 1100°С в присутствии графитовой стружки, полностью окружающей компакты. Затем компакты повторно обрабатывают на воздухе при температуре более 700°С в течение 1 ч. Технический результат – увеличение количества кислородных вакансий в матрице диоксида циркония, что приводит к увеличению интенсивности люминесценции диоксида циркония в полосе 480 нм. 4 ил.

 

Изобретение относится к люминесцентным материалам и их применению в электронике и может быть использовано в фотонике, лазерной технике, оптоэлектронике. Оно может применяться при разработке лазерных фотоприемников, оптически активных слоев фотолюминесцентных, катодолюминесцентных и электролюминесцентных устройств, амперометрических биосенсоров, хемилюминесцентных сенсоров, золь-гелевых стекол, легированных функциональными наночастицами (полупроводниковыми или металлическими).

Известны способы повышения интенсивности люминесценции:

- патент RU 2628781 (Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской Академии наук «Люминесцентное вещество»);

- патент RU 2108598 (Кемеровский государственный университет «Рабочее вещество для термолюминесцентного дозиметра ионизирующих излучений»).

Общим недостатком данных методов является то, что в них для повышения интенсивности люминесценции используются легирующие примеси. Известно, что в формировании полосы люминесценции ZrO2 при 480 нм принимают участие кислородные вакансии. Поэтому введение примесей в матрицу диоксида циркония, как в указанных аналогах, не приведет к увеличению интенсивности люминесценции полосы при 480 нм.

Также известно люминесцентное вещество [патент RU 2024570 (Бурятский институт естественных наук СО РАН «Люминесцентное вещество»)], в котором шихту из оксидов K2O; ВаО; Y2O3; Nd2O3; MoO3 гомогенизируют и отжигают в две стадии: при
550 – 570°С 35 – 40 ч и 720 – 750°С 70 – 80 ч.

Недостатком данного способа является низкая температура термообработки, при которой не образуются кислородные вакансии за счет термохимического окрашивания. В результате такой обработки интенсивность свечения ZrO2 не изменится.

Из литературы известен способ создания профилированного монокристалла сапфира с примесью углерода, выращенный методом Степанова [М.С. Аксельрод, В.С. Кортов, И.И. Мильман, Е.А. Горелова, А.А. Борисов, Л.М. Затуловский, Д.Я. Кравецкий, И.Е. Березина, Н.К. Лебедев «Профилированные легированные углеродом монокристаллы окиси алюминия для термолюминесцентных дозиметрических детекторов»].

Данный способ основан на выращивании кристаллов в присутствии графита. В результате такой обработки наблюдается образование карбида циркония на поверхности компактов, что вызывает почернение компактов и уменьшение интенсивности люминесценции. Указанный способ не предусматривает какой-либо повторной обработки монокристаллов с целью устранения данного почернения.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому следует считать способ повышения интенсивности люминесценции диоксида циркония на основе термообработки микрокристаллических компактов, полученных путем холодного одноосного прессования, на воздухе в муфельной печи при 400°С в течение 1 часа [S.V. Nikiforov, V.S.Kortov, M.G.Kazantseva, K.A.Petrovykh. Luminescent properties of monoclinic zirconium oxide. Journal of Luminescence 166 (2015) 111–116]. При реализации указанного способа интенсивность люминесценции возрастает только за счет увеличения размера зерна. Недостатком данного способа является отсутствие условий для формирования кислородных вакансий, что не позволяет достичь существенного повышения интенсивности люминесценции.

Проблемой, которую решает изобретение, является низкая интенсивность люминесценции диоксида циркония в полосе 480 нм.

Сущность заявляемого способа повышения интенсивности люминесценции оксидных диэлектриков заключается в том, что нанопорошок ZrO2 путем холодного одноосного прессования при давлении 900–1100 кг⋅с/см2 формируют в компакты с последующей их термообработкой, отличающейся тем, что термообработку осуществляют в вакууме при температуре более 1100°С в присутствии графита в виде графитовой стружки, полностью окружающей компакты, с последующей повторной обработкой компактов на воздухе при температуре более 700°С в течение 1 часа.

Для реализации заявляемого способа нанопорошок диоксида циркония формируется методом холодного одноосного прессования при давлении 900-1100 кг⋅с/см2 в компакты. Выбор таких значений обусловлен тем, что при больших давлениях происходит расслаивание компактов, а при меньших они становятся хрупкими. В обоих случаях ухудшаются их прочностные характеристики, что может привести к неконтролируемому изменению интерсивности люминесценции. Далее компакты подвергаются высокотемпературной обработке в присутствии углерода в виде графитовой стружки массой 1 г, полностью окружающей компакты в алюминиевых тиглях (фиг. 1) в электровакуумной печи при температуре свыше 1100°C. Полное окружение компакта графитовой стружкой позволяет достичь лучшей воспроизводимости интенсивности люминесценции компактов, полученных как в одном, так и в разных технологических циклах термообработки по сравнению с отжигом в графитовых тиглях за счет более равномерного распределения кислородных вакансий по объему компакта. Среднее квадратичное отклонение светосуммы термолюминесценции компактов, отожженных в графитовой стружке, в 4 раза меньше, чем у компактов, отожженных в графитовых тиглях (фиг. 2). Выбор температуры свыше 1100°С объясняется тем, что при такой температуре наблюдается интенсивная диффузия атомов кислорода. За счет чрезвычайно низкого парциального давления кислорода и наличия графита в печи атомы решеточного кислорода диффундируют в окружающую атмосферу с образованием СО и созданием дефицита кислорода в анионной подрешетке диоксида циркония (кислородные вакансии).

Присутствие графита при отжиге обусловливало восстановление поверхности диоксида циркония до карбида циркония. Химическая реакция образования карбида представлена ниже в формуле (1):

ZrO2+3С → ZrC+2СО. (1)

Образование карбида циркония обуславливает потемнение компактов. Это потемнение приводит к уменьшению интенсивности люминесценции диоксида циркония (фиг. 3). Интенсивность люминесценции после термообработки в присутствии графита (кривая 2) значительно ниже интенсивности люминесценции компактов до термообработки (кривая 1).

С целью устранения карбида циркония с поверхности компактов после термообработки в вакууме ZrO2 отжигался на воздухе при температуре 900°C в муфельной печи в течение 1 часа. Соответствующая химическая реакция приведена ниже в формуле (2):

ZrC+O2 → ZrO2+C (2)

При температурах выше 700°C карбид циркония взаимодействует с кислородом с образованием ZrO2. В результате этого происходит восстановление углерода. В обработанных таким образом компактах, представляющих собой керамику, содержание карбида циркония значительно снижается. Из фиг.4 видно, что интенсивность люминесценции обработанного таким образом диоксида циркония (кривая 2) значительно увеличивается в сравнении с не обработанным ZrO2 (кривая 1).

Технический результат – увеличение количества кислородных вакансий в матрице диоксида циркония в результате термохимического окрашивания в восстановительных условиях, что приводит к увеличению интенсивности люминесценции диоксида циркония в полосе 480 нм.

Способ повышения интенсивности люминесценции оксидных диэлектриков, включающий холодное одноосное прессование нанопорошка ZrO2 при давлении 900–1100 кгс/см2 с получением компактов с последующей их термообработкой, отличающийся тем, что термообработку осуществляют в вакууме при температуре более 1100°С в присутствии графита в виде графитовой стружки, полностью окружающей компакты, с последующей повторной обработкой компактов на воздухе при температуре более 700°С в течение 1 часа.



 

Похожие патенты:
Изобретение относится к технологии получения менисков, оболочек и заготовок линз оптических систем современных оптических, оптоэлектронных и лазерных приборов, работающих в ультрафиолетовой, видимой и ИК-областях спектров, и может быть использовано для получения выпукло-вогнутых линз из кристаллов фтористого лития.

Изобретение относится к синтезу монокристаллического CVD алмазного материала, который может быть использован в оптике, ювелирных изделиях, в качестве подложек для дальнейшего CVD роста алмазов, механических применениях, в области квантового зондирования и обработки информации.

Изобретение относится к использованию ударных волн для проведения химических реакций или для модификации кристаллической структуры веществ, в частности к способу формирования пустот в ионных кристаллах KBr.

Изобретение относится к технологии выращивания кристаллов многокомпонентных фторидов со структурой флюорита в системах MF2-CeF3, которые широко используются в оптике, фотонике, физике высоких энергий.

Изобретение относится к сцинтилляционным неорганическим оксидным монокристаллам со структурой граната, предназначенным для датчиков ионизирующего излучения в задачах медицинской диагностики, экологического мониторинга, неразрушающего контроля и разведке полезных ископаемых, экспериментальной физике, устройствах для измерения в космосе.

Изобретение относится к полупроводниковой технике, а именно к области изготовления гетероэпитаксиальных слоев монокристаллического кремния различного типа проводимости и высокоомных слоев в производстве СВЧ-приборов, фото- и тензочувствительных элементов, различных интегральных схем с повышенной стойкостью к внешним дестабилизирующим факторам.

Изобретение относится к ИК-оптике, а именно к созданию лазерных сред, и касается разработки способа получения легированных халькогенидов цинка для перестраиваемых твердотельных лазеров, используемых, в частности, в медицине и биологии.

Изобретение относится к выращиванию из расплава на затравку монокристаллов Cd1-xZnxTe (CZT), где 0≤х≤1 ОТФ-методом. Способ выращивания кристаллов CZT осуществляют под высоким давлением инертного газа, в условиях осевого теплового потока вблизи фронта кристаллизации - методом ОТФ, с использованием фонового нагревателя и погруженного в расплав нагревателя - ОТФ-нагревателя 6, путем вытягивания тигля 1 с расплавом в холодную зону со скоростью ν при разных начальных составах шихты 5, 7 в зоне кристаллизации W1 с толщиной слоя расплава h, и в зоне подпитки W2, а также с использованием щупа – зонда 3 контроля момента плавления загрузки в зоне кристаллизации W1, при этом для получения макро- и микрооднородных монокристаллов CZT заданной кристаллографической ориентации на дно тигля 1 устанавливают монокристаллическую затравку Cd1-xZnxTe требуемой кристаллографической ориентации 2, по центру затравки 2 устанавливают зонд 3 и размещают шихту 5, состав которой обеспечивает, с учетом частичного плавления затравки 2 и в соответствии с фазовой диаграммой состояния системы CdZnTe, рост монокристалла Cd1-xZnxTe при заданной толщине слоя расплава h в зоне кристаллизации W1, затем устанавливают ОТФ- нагреватель 6, над ОТФ-нагревателем 6 размещают шихту 7 состава, равного составу затравки 2, формируя зону подпитки W2, затем ОТФ-кристаллизатор с тиглем 1, затравкой 2, шихтой 5, 7 и ОТФ-нагревателем 6 с зондом 3 устанавливают в ростовую печь, печь заполняют инертным газом и ОТФ-кристаллизатор нагревают в печи в вертикальном градиенте температур со скоростью 10-50 град/час до начала плавления верха затравки 2 с последующим опусканием зонда 3 вниз до контакта с непроплавленной частью затравки 2, затем нагрев прекращают, а зонд 3 перемещают вверх до уровня дна ОТФ-нагревателя 6, систему выдерживают в течение 1-5 часов, контролируя с помощью зонда 3 темп плавления затравки 2, после чего начинают рост кристалла путем вытягивания тигля 1 вниз с скоростью 0,1-5 мм/ч относительно неподвижного ОТФ-нагревателя 6 с зондом 3.

Изобретение относится к ИК-оптике, а именно к созданию лазерных сред, и касается технологии получения легированных переходными металлами халькогенидов цинка в качестве активной среды или пассивного затвора для твердотельных лазеров.

Изобретение относится к сцинтиллятору, который может быть использован в качестве детектора рентгеновского излучения в медицине, при досмотре вещей в аэропортах, досмотре грузов в портах, в нефтеразведке.

Изобретение относится к способам получения керамических люминесцентных и сцинтилляционных материалов. Такие материалы находят применение в качестве сцинтилляторов для систем рентгеновской компьютерной томографии, досмотровой техники и др., а также в качестве люминофоров для систем твердотельного освещения.

Изобретение может быть использовано при изготовлении экологически чистых источников света. Сначала готовят исходную смесь следующих компонентов, мол.%: карбонат калия K2CO3 - 12,5; карбонат кальция CaCO3 - 25; борную кислоту Н3ВО3 - 50 и оксид редкоземельного элемента неодима Nd2O3 - 12,5.

Изобретение относится к технологии получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных гетероструктур и приборов для конверсии электромагнитного излучения, сенсоров и многоцветных светоизлучающих диодов (LEDs).

Изобретение относится к неорганической химии и индикаторной технике и может быть использовано при изготовлении плазменных панелей, возбуждаемых постоянным и переменным полем.

Изобретение относится к химии и может быть использовано при производстве люминесцентных материалов для источников и преобразователей света. Готовят реакционную смесь механическим перемешиванием в планетарной мельнице в течение 20 мин порошков пероксидов или оксидов щелочноземельных металлов, оксида европия (III), оксида магния, оксида марганца (II), оксида алюминия, алюминия, перхлората натрия.

Изобретение относится с области светотехники и может быть использовано в светодиодах для автомобилей. Источник (1) света содержит источник когерентного возбуждающего излучения (3) в виде твердотельного лазера (2) с максимумом испускания в спектральном интервале 340-480 нм и монокристалл (4) кристаллофосфора, имеющий состав (Y0,15Lu0,85)3Al5O12 или химическую формулу B1-qAlO3:Dq, где В - по меньшей мере один из химических элементов Y, Lu и Gd, D - по меньшей мере один из химических элементов Eu, Sm, Ti, Mn, Pr, Dy, Cr и Се, q - от 0,0001 до 0,2, а содержание химических элементов, обозначенных в указанной химической формуле как D, составляет 0,01-20 мол.%.
Изобретение может быть использовано в системах визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения. Сначала готовят три исходных раствора I, II, III.

Изобретение относится к технологии получения поликристаллических сцинтилляционных материалов, применяемых в различных областях науки и техники, важнейшими из которых являются: медицинские и промышленные томографы, системы таможенного контроля и контроля распространения радиоактивных материалов, приборы дозиметрического контроля, различные детекторы для научных исследований, применяемые в физике высоких энергий и астрофизике, оборудование для геофизических исследований для нефте- и газоразведки.

Изобретение относится к неорганической химии и может быть использовано при изготовлении дисплеев с полевой эмиссией электронов или фотолюминесцентных приборов. Люминофор на основе титаната кальция, активированный празеодимом (III), имеет общую формулу Ca1-xPrxTiO3, где 0,001≤х≤0,005.
Изобретение может быть использовано в электронике. Германат редкоземельных элементов состава Ca2La8(1-х)Eu8хGe6O26, где 0,05≤х≤0,15, в наноаморфном состоянии используют в качестве люминофора белого цвета свечения.

Изобретение относится к композиционной частице. Описана композиционная частица для применения в маркировке, содержащая по меньшей мере одну суперпарамагнитную часть и по меньшей мере одну термолюминесцентную часть, при этом композиционная частица содержит (b) термолюминесцентную центральную часть (ядро), которая по меньшей мере частично окружена (а) суперпарамагнитным материалом.

Изобретение может быть использовано в фотонике, лазерной технике и оптоэлектронике при изготовлении лазерных фотоприемников, оптически активных слоёв фотолюминесцентных, катодолюминесцентных и электролюминесцентных устройств, амперометрических биосенсоров, хемилюминесцентных сенсоров, золь-гелевых стекол. Нанопорошок ZrO2 подвергают холодному одноосному прессованию при давлении 900–1100 кг⋅ссм2. Полученные компакты термообрабатывают в вакууме при температуре более 1100°С в присутствии графитовой стружки, полностью окружающей компакты. Затем компакты повторно обрабатывают на воздухе при температуре более 700°С в течение 1 ч. Технический результат – увеличение количества кислородных вакансий в матрице диоксида циркония, что приводит к увеличению интенсивности люминесценции диоксида циркония в полосе 480 нм. 4 ил.

Наверх