Способ отбора проб сжиженного природного газа (спг)



Способ отбора проб сжиженного природного газа (спг)
Способ отбора проб сжиженного природного газа (спг)
Способ отбора проб сжиженного природного газа (спг)
Способ отбора проб сжиженного природного газа (спг)
Способ отбора проб сжиженного природного газа (спг)
Способ отбора проб сжиженного природного газа (спг)
Способ отбора проб сжиженного природного газа (спг)
Способ отбора проб сжиженного природного газа (спг)
Способ отбора проб сжиженного природного газа (спг)
Способ отбора проб сжиженного природного газа (спг)
Способ отбора проб сжиженного природного газа (спг)
Способ отбора проб сжиженного природного газа (спг)
G01N1/14 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2716442:

федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" (RU)

Изобретение относится к области получения и подготовки образцов сжиженного природного газа (СПГ) для анализа, в частности к обеспечению закачки пробы СПГ в пробоотборник, и может быть использовано в криогенной газовой промышленности. Способ включает отбор пробы СПГ, ее регазификацию, поддержание требуемого давления и транспортировку одной части пробы на газовый хроматограф для химического анализа, а другой части для сжатия и закачки в пробоотборник постоянного давления для анализа в лабораторных условиях, что производится жидкостно-газовым эжектором за счет разницы давления потока СПГ, который поступает по линии, соединенной с зондом и технологическим трубопроводом СПГ для подачи на эжектор, и потока регазифицированной пробы, который создает область разрежения в камере смешения жидкостно-газового эжектора и обеспечивает подачу СПГ. Технический результат - предотвращение изменения первоначального химического состава пробы, а также сокращение объема пробы, подвергающейся регазификации. 2 ил.

 

Изобретение относится к области получения и подготовки образцов сжиженного природного газа (СПГ) для анализа, в частности к обеспечению закачки пробы СПГ в пробоотборник, и может быть использовано в криогенной газовой промышленности.

Известен способ утилизации низконапорного газа (патент РФ №2297520, опубл. 20.04.2007 г.), включающий улавливание низконапорного газа эжектором, через который прокачивают насосом рабочую жидкость под давлением 2,3÷9,5 МПа, смешивают рабочую жидкость с низконапорным газом, при этом содержание углеводородов в смешиваемых компонентах обеспечивают не менее 10% от объема этих компонентов, повышают давление в проточной части эжектора и трубопроводе за этим эжектором, обеспечивают сжатие низконапорного газа до давления 0,3÷6,5 МПа, после эжектирования водогазовую смесь подают в сепаратор, где осуществляют отделение рабочей жидкости от газа, после сепаратора газ с требуемым для транспортировки давлением направляют в магистральный газопровод, а рабочую жидкость, потери которой восполняют, возвращают в эжектор.

Недостатком данного способа являются высокие энергозатраты, необходимые для нагнетания давления рабочей жидкости и эффективной работы эжектора, а также необходимость в последующем сепарировании водогазовой смеси.

Известен способ отбора пробы газа (патент РФ №2173841, опубл. 20.09.2001 г.), который включает перемещение газа из контролируемой среды в газопроводящую линию под действием разрежения, создающегося направленной через эжектор струей воздуха, образованной под действием разности давлений в окружающей среде и в потоке контролируемой среды.

Недостатком данного способа является то, что вывод газа после осуществления анализа осуществляется путем его введения в направленную струю воздуха, что влечет за собой смешение потоков и изменение компонентного состава в контролируемой среде. Кроме того, система предусматривает откачку топлива только с давлением ниже атмосферного, так как известный способ основан на использовании в качестве рабочего потока воздуха из окружающей среды, поэтому его применение возможно только в случае, когда давление в потоке контролируемой среды меньше давления воздуха.

Известен способ непрерывного отбора проб СПГ с компрессором и газгольдером с гидрозатвором (Национальный стандарт Российской Федерации ГОСТ Р 56719-2015 «Газ горючий природный сжиженный. Отбор проб»), который включает в технологической схеме отбора проб компрессор, служащий для подачи пробы газа в пробоотборник.

Недостатком данного способа является возможность изменения компонентного состава подаваемой пробы из-за попадания смазочных масел газового компрессора, а также дополнительные капитальные и энергетические затраты при комплектации и эксплуатации системы соответственно. Кроме того, использование компрессора приводит к снижению надежности использования технологической системы непрерывного отбора в целом и дополнительному обслуживанию оборудования.

Известен способ периодического отбора проб сжиженного природного газа (СПГ) с пробоотборниками постоянного давления (Национальный стандарт Российской Федерации ГОСТ Р 56719-2015 «Газ горючий природный сжиженный. Отбор проб.») принятый за прототип, который включает отбор пробы СПГ, его регазификацию, поддержание требуемого давления и транспортировку для химического анализа пробы, которая закачивается в пробоотборник с помощью газового компрессора.

Недостатком данного способа является возможность изменения компонентного состава подаваемой пробы из-за попадания смазочных масел газового компрессора, а также дополнительные капитальные и энергетические затраты при комплектации и эксплуатации системы соответственно.

Техническим результатом является предотвращение изменения первоначального химического состава пробы сжиженного природного газа, а также уменьшение объема пробы, подвергающегося регазификации.

Технический результат достигается тем, что сжатие и закачка пробы в пробоотборник постоянного давления производится жидкостно-газовым эжектором за счет разницы давления потока СПГ, который поступает по линии пробоотбора СПГ, которая соединена с зондом и технологическим трубопроводом СПГ для подачи на эжектор, и потока регазифицированной пробы, который создает область разрежения в камере смешения жидкостно-газового эжектора и обеспечивает подачу СПГ.

Способ поясняется следующими фигурами:

фиг. 1 - алгоритм реализации способа отбора проб СПГ;

фиг. 2 - принципиальная схема эжекторной системы для периодического отбора проб СПГ, где:

1 - технологический трубопровод СПГ;

2 - зонд;

3 - линия пробоотбора СПГ для регазификации;

4 - испаритель;

5 - нагреватель;

6 - манометр;

7 - термометр;

8 - аккумулятор;

9 - вентиль;

10 - регулятор давления;

11 - задвижка;

12 - предохранительный клапан;

13 - свеча;

14 - фильтр пробы;

15 - хроматограф;

16 - трубопровод РСПГ;

17 - эжектор жидкостно-газовый;

18 - линия пробоотбора СПГ для подачи на эжектор;

19 - расходомер;

20 - игольчатый вентиль;

21 - пробоотборник постоянного давления;

22 - соленоидный клапан;

23 - система автозагрузки;

24 - газопровод-отвод на технологические нужды.

Способ осуществляется следующим образом. СПГ, идущий по технологическому трубопроводу СПГ 1 (фиг. 1, 2) отбирается зондом 2 и поступает по линии пробоотбора СПГ для регазификации 3 на испаритель 4, где подлежит регазификации, последующая фильтрация от механических примесей производится на фильтре пробы 14. Затем часть пробы отправляется на хроматограф 15, а часть по трубопроводу РСПГ 16 на эжектор жидкостно-газовый 17, который закачивает пробу в пробоотборник постоянного давления 21 уже в сжиженном состоянии. Для обеспечения полной регазификации тяжелых углеводородов производится нагрев испарителя 4 нагревателем 5. Аккумулятор 8 используется для сглаживания пульсаций давления регазифицированной пробы. Манометр 6 и термометр 7 необходимы для контроля давления и температуры потока пробы соответственно. Абсолютное давление регазифицированной пробы СПГ, поддерживается с помощью регулятора давления 10 в интервале от 0,25 до 1,0 МПа в соответствии с ГОСТ Р 56719-2015. Сброс избытка давления предусмотрен при срабатывании предохранительного клапана 12 по свече 13. Требуется открытие задвижки 11 при эксплуатации системы отбора проб. По линии пробоотбора СПГ для подачи на эжектор 18 поступает СПГ, отбираемый из технологического трубопровода СПГ 1, на эжектор жидкостно-газовый 17, при этом являясь низконапорным потоком с давлением 0,25 МПа. Подача пробы регулируется вентилем 9. Система оборудуется пробоотборником постоянного давления 21 объемом от 0,5 до 1 дм3. Требуемый объем обеспечивается благодаря внутреннему объемному расходу СПГ и расходу откачиваемого РСПГ и контролируется расходомером 19. Пробоотборник постоянного давления 21 оборудуется следующими конструктивными элементами: предохранительными клапанами 12, манометрами 6 и игольчатыми вентилями 20, которые служат для регулирования потока пробы. Система автозагрузки 23 осуществляет предварительное заполнение пробоотборника постоянного давления 21 с соответствующей стороны аргоном, азотом или иным инертным газом, а соленоидный клапан 22 осуществляет электромеханическое регулирование этого потока. Избытки пробы транспортируются по газопроводу-отводу на технологические нужды 24.

Способ поясняется следующим примером. Для выполнения расчета, теоретически были определены следующие параметры:

- состав смеси СПГ (CH4=95,5%; С2Н6=2,3%; N2=1,7% и др.);

- степень сжатия СПГ на входе в эжектор z=0,009883;

- температуру СПГ на входе в эжектор Тж=120 К;

- абсолютное давление СПГ на входе в эжектор Рж=0,25 МПа;

- давление пара на входе в эжектор Рг=0,1 МПа;

- расход откачиваемого топлива Qж0=31 дм31 мин;

- давление насыщенных паров Ps=0,192 МПа.

На основании данных, представленных в ГОСТ Р 56851-2016, выбрана смесь №2, имитирующая СПГ, в соответствии с которой представлены расчетные значения термодинамических свойств. В зависимости от заданного абсолютного давления СПГ, регламентированного ГОСТ Р 56719-2015, выбраны параметры жидкой фазы топлива - степень сжатия и температура.

Значение давления насыщенных паров задано согласно ГОСТ Р 56021-2014 и в соответствии с температурой топлива, равной 120 K.

Исходя из того, что абсолютное давление РСПГ после испарителя необходимо поддерживать в интервале от 0,25 до 1,0 МПа, выбрано давление пара на входе в эжектор равное 0,7 МПа, как усредненное значение.

Далее в подробном описании представлен пример расчета основных параметров работы ЖГЭ с аэродиномической схемой №1 для отбора проб.

В качестве рабочей среды выступает высоконапорный поток регазифицированной пробы СПГ.

- внутренний объемный расход жидкости, перекачиваемой ЖГЭ (формула 1):

где z - коэффициент сжимаемости СПГ; Ps - давление насыщенных паров рабочей жидкости, МПа, Рг - давление газа (паров СПГ), МПа; Тж - температура жидкости (СПГ), Qж0 - расход откачиваемой жидкости, м3/ед.; Т00 - абсолютные показатели температуры и давления соответственно, K, МПа.

- приведенное давление рабочей жидкости (формула 2):

- коэффициент эжекции (внутренний коэффициент объемного расхода (формула 3):

где umax - максимальный коэффициент эжекции, зависящий от типа аэродинамической схемы (таблица 1), Вопт - эмпирический коэффициент, зависящий от типа аэродинамической схемы.

- коэффициент восстановления давления (формула 4):

где ψmax - максимальный коэффициент восстановления давления, зависящий от типа аэродинамической схемы, аопт - эмпирический коэффициент, зависящий от типа аэродинамической схемы.

- расход рабочего потока газа (формула 5):

■ степень сжатия газа (формула 6):

- давление смеси на выходе из ЖГЭ (формула 7):

- коэффициент полезного действия (формула 8):

- мощность, затрачивая на компримирование, при работе эжектора, с точностью до КПД насоса, МВт (формула 9):

- приведенная мощность, затрачиваемая на компримирование (формула 10):

Результаты расчета определяющих параметров эффективности с учетом коэффициентов для оптимального режима для четырех типов аэродинамических схем соответственно приведены в таблице 1.

Выбор аэродинамической схемы эжектора зависит от наиболее эффективных показателей КПД, коэффициента эжекции и приведенной мощности. В жидкостно-газовом эжекторе наибольший КПД достигается в том случае, если процесс обмена количеством движения между активным и пассивными потоками завершается в пределах рабочей камеры и закачивается перед входом в диффузор, чему наиболее соответствует схема №1 по результатам расчета. Благодаря высокому перепаду давления между потоками СПГ и регазифицированной пробой, а также относительно низкому коэффициенту эжекции для выбранного типа аэродинамической схемы №1 произведенные теоретические расчеты позволяют привести к энергоэффективным результатам.

Преимущество данного способа состоит в том, что система периодического отбора проб СПГ позволяет предотвратить изменение первоначального химического состава пробы сжиженного природного газа за счет работы жидкостно-газового эжектора, не требующего смазочных масел, а также сократить объем пробы, подвергающийся регазификации путем отбора ее части в виде СПГ жидкостно-газовым эжектором с конструктивными параметрами, обеспечивающими коэффициент полезного действия 41% и мощность 2,4 Вт.

Способ отбора проб сжиженного природного газа (СПГ), включающий отбор пробы СПГ, ее регазификацию, поддержание требуемого давления и транспортировку для химического анализа пробы на газовом хромотографе и закачку пробы в пробоотборник постоянного давления для анализа в лабораторных условиях, отличающийся тем, что сжатие и закачка пробы в пробоотборник постоянного давления производится жидкостно-газовым эжектором за счет разницы давления потока СПГ, который поступает по линии пробоотбора СПГ, которая соединена с зондом и технологическим трубопроводом СПГ для подачи на эжектор, и потока регазифицированной пробы, который создает область разрежения в камере смешения жидкостно-газового эжектора и обеспечивает подачу СПГ.



 

Похожие патенты:

Фототермическое интерферометрическое устройство (1) для детектирования молекул в образце, содержащее: интерферометр (4) Фабри-Перо с первым зеркалом (5), вторым зеркалом (6) и первым резонатором (7) для вмещения образца, простирающимся между первым зеркалом (5) и вторым зеркалом (6), при этом зеркала установлены неподвижно, на фиксированном расстоянии друг от друга, зондирующее лазерное устройство с по меньшей мере одним зондирующим лазером (3) для получения первого зондирующего лазерного пучка (8а) и второго зондирующего лазерного пучка (8b), возбуждающий лазер (2) для направления возбуждающего лазерного пучка (2а) через первый резонатор (7) интерферометра (4) Фабри-Перо для возбуждения указанной молекулы в образце, - причем интерферометр (4) Фабри-Перо содержит третье зеркало (39), четвертое зеркало (40) и второй резонатор (41) для вмещения образца, простирающийся между третьим (39) и четвертым (40) зеркалами, - первый (7) и второй (41) резонаторы интерферометра (4) Фабри-Перо расположены таким образом, чтобы первый зондирующий лазерный пучок (8а) пересекался с возбуждающим лазерным пучком (2а) в первом резонаторе (7), а второй зондирующий лазерный пучок (8b) не пересекался с возбуждающим лазерным пучком (2а) во втором резонаторе, фотодетекторный блок (9), содержащий первый фотодетектор (44) для детектирования прошедшего первого зондирующего лазерного пучка (8а), и второй фотодетектор (45) для детектирования прошедшего второго зондирующего лазерного пучка (8b) и вычитающее устройство, предназначенное для вычитания второго сигнала пропускания, соответствующего второму прошедшему зондирующему лазерному пучку, из первого сигнала пропускания, соответствующего первому прошедшему зондирующему лазерному пучку.

Изобретение относится к приборостроению, в частности к устройствам для отбора проб аэрозолей из воздушной среды для последующего физико-химического или микробиологического анализа.
Изобретение относится к области исследования посредством рентгеновской компьютерной микро- и нанотомографии биологических объектов, в частности кадаверного цельного глазного яблока и его секционных фрагментов.

Группа изобретений относится к анализу углеводородсодержащих сред с помощью циклонной сепарации. Представлен способ анализа углеводородсодержащей текучей среды, который включает: подачу углеводородсодержащей текучей среды в циклонный сепаратор; разделение углеводородсодержащей текучей среды на образец газовой фазы и образец жидкой фазы с помощью циклонного сепаратора; разделение образца жидкой фазы на водный образец и неводный образец; оценку объема образца газовой фазы, причем оценка объема образца газовой фазы включает регулировку объема образца газовой фазы на основе состава газа; оценку объема неводного образца и оценку конденсатно-газового соотношения углеводородсодержащей текучей среды, причем конденсатно-газовое соотношение углеводородсодержащей текучей среды представляет собой отношение объема неводного образца к объему образца газовой фазы.

Изобретение относится к области медицины и представляет собой способ определения сроков пребывания на втором этапе ранней реабилитации пациентов с производственными травмами, включающий обследование пациента, проведение курсовой программы реабилитации, рассчитанной на 21 день, состоящей из физиотерапевтических, бальнеологических процедур и лечебной гимнастики, отличающийся тем, что в начале курсовой программы реабилитации и через пять дней ее выполнения у пациента проводят забор капиллярной крови из пальца и по формуле периферической крови проводят оценку адаптационной реакции организма, по результатам которой определяют срок пребывания на втором этапе ранней реабилитации: при реакции тренировки - 21 день, при реакции активации - 21 день, при реакции спокойной активации - 21 день плюс 10 дней, при реакции повышенной активации - 21 день плюс 14 дней, при реакции стресс острый - 21 день плюс 18 дней, при реакции стресс хронический - 21 день плюс 21 день, при добавлении дополнительных дней проводят корректировку расстановки процедур по дням.

Изобретение относится к системе отбора проб для проверки в отношении ионов тяжелых металлов при закладке пустой угольной породой выработанного пространства угольных шахт.

Изобретение относится к области медицины, в частности к иммунологии и клинической лабораторной диагностике, и предназначено для обнаружения внеклеточной ДНК в цельной периферической крови.

Изобретение относится к области газохроматографического анализа галогенированных ароматических кетонов. Раскрыт способ количественного газохроматографического анализа хлорацетофенона в воде, характеризующийся тем, что анализируют экстракт пробы воды в хлористом метилене на газовом хроматографе с пламенно-ионизационным детектором, а расчет концентрации хлорацетофенона проводят методом внутреннего стандарта, в качестве которого используют 3-нитротолуол.

Настоящее изобретение относится к области иммунологии. Предложены антитело и его антигенсвязывающий фрагмент, способные к специфическому связыванию с PD-L1.

Изобретение относится к медицине, в частности к применению комбинации ионообменных картриджей типа Chromafix HR-XC в Н+-форме и Chromafix 30-PS в НСО3-форме в устройстве для очистки и концентрирования элюата генератора 68Ge/68Ga для синтеза радиофармпрепаратов на основе галлия-68.
Наверх