Топка для утилизации тко



Топка для утилизации тко
Топка для утилизации тко
F23B80/02 - Устройства для сжигания твердого топлива (для одновременного или попеременного сжигания кускового с другим видом топлива F23C 1/00; устройства для сжигания в псевдоожиженном слое F23C 10/00; сжигание низкосортного топлива и мусора F23G; колосниковые решетки F23H; подача твердого топлива в устройства для сжигания F23K; конструктивные элементы камер сгорания, не отнесенные к другим подклассам F23M; бытовые отопительные устройства F24; котлы центрального отопления F24D; автономные компактные котлы F24H)

Владельцы патента RU 2716652:

Миронос Александр Васильевич (RU)
Чернов Николай Александрович (RU)
Новиков Игорь Кимович (RU)

Изобретение относится к устройствам для утилизации твердых коммунальных отходов (ТКО), в частности, при термической переработке мусора, бытовых и промышленных отходов. Топка для утилизации ТКО включает корпус, внутри которого расположены две камеры – верхняя и нижняя, разделенные неподвижной колосниковой решеткой и соединенные между собой по меньшей мере одним ходом рециркуляции, патрубок подачи первичного воздуха, соединенный с корпусом посредством хода рециркуляции, камеру дожига, связанную с корпусом посредством по меньшей мере одного газового канала, и дымосос, связанный с камерой дожига, при этом по меньшей мере один ход рециркуляции соединен с нижней камерой и с возможностью направления выходящего из него потока газа по касательной к внутренней поверхности нижней камеры. Топка дополнительно включает теплообменник, соединенный с камерой дожига и дымососом. Технический результат изобретения направлен на обеспечение следующих возможностей: улучшение экологических показателей, снижение суммарной величины тепловых потерь с химическим и механическим недожогом на выходе из топки до 10%, отсутствие необходимости внесения дополнительных источников топлива в процессе утилизации ТКО. 1 з.п. ф-лы, 1 ил.

 

Область техники

Изобретение относится к устройствам для утилизации твердых коммунальных отходов (ТКО), в частности, при термической переработке мусора, бытовых и промышленных отходов.

Уровень техники

В настоящее время существуют большое количество устройств для утилизации ТКО.

Так в уровне технике известна топка (RU 2559103 С2, 10.08.2015)Д1) с неподвижной колосниковой решеткой и подвижным слоем топлива с наклонным зеркалом горения для сжигания агропеллет, включающая топку водотрубного или жаротрубного котла и чугунную колосниковую решетку.

Недостатком представленной в Д1 топки является отсутствие возможности утилизации неоднородного топлива (например, ТКО естественной влажности) и образование большого количества выбросов продуктов горения в атмосферу.

Также в уровне техники известна пиролизная термогазохимическая установка для утилизации твердых бытовых отходов (RU 2428629 C1, 10.09.2011), включающая камеру сгорания с колосниками, соединенную с каналом подачи первичного воздуха, термогазохимический реактор, выполненный в виде корпуса с размещенной в нем цилиндрической ретортой, снабженной герметичной крышкой и выходом продуктов пиролиза, и камеру подачи вторичного воздуха. Установка снабжена коллектором, фильтрующим блоком, вход которого подключен в верхней части корпуса термогазохимического реактора над цилиндрической ретортой, а выход соединен с камерой подачи вторичного воздуха и атмосферой посредством газохода, обеспечивающего циркуляцию отходящих газов. Камера сгорания и камера подачи вторичного воздуха размещены в отдельном корпусе, разделены криволинейной перегородкой, а полости камер выполнены сообщающимися с полостью корпуса термогазохимического реактора, по внутренней боковой поверхности корпуса термогазохимического реактора закреплены завихрители потока.

Недостатком представленного в Д2 устройства является сложность конструкции и необходимость использования дополнительного существенного, по потребляемой мощности, источника тепловой энергии.

Раскрытие изобретения

Задачей, на решение которой направлено заявленное изобретение, является разработка топки для утилизации ТКО, которая позволит устранить недостатки предшествующего уровня техники.

Технический результат заявленного изобретения направлен на обеспечение следующих возможностей:

- улучшение экологических показателей, за счет того, что: уменьшается количество выбросов СО, не превышающее 40 PPM, СО2 до 8%, NOх, не превышающее 30 PPM, SO3 до 10 PPM и т.д., в составе выхлопных газов содержится от 9 до 16% кислорода;

- снижение суммарной величины тепловых потерь с химическим и механическим недожогом на выходе из топки до 10%.

- отсутствие необходимости внесения дополнительных источников топлива в процессе утилизации ТКО, с возможностью достижения теплового напряжения камеры сгорания 0,2 МВт/м3, за счет утилизации ТКО.

Указанный технический результат, на достижение которого направлено заявленное техническое решение, достигается благодаря тому, что топка для утилизации твердых коммунальных отходов (ТКО) содержит корпус, внутри которого расположены две камеры – верхняя и нижняя, разделенные неподвижной колосниковой решеткой и соединенные между собой по меньшей мере одним ходом рециркуляции, патрубок подачи первичного воздуха, соединенный с корпусом посредством хода рециркуляции, камеру дожига, связанную с корпусом посредством по меньшей мере одного газового канала, и дымосос, связанный с камерой дожига, при этом по меньшей мере один ход рециркуляции соединен с нижней камерой и с возможностью направления выходящего из него потока газа по касательной к внутренней поверхности нижней камеры.

Топка дополнительно включает теплообменник, соединенный с камерой дожига и дымососом.

Корпус снабжен люком загрузки твердых коммунальных отходов.

Краткое описание чертежа.

На чертеже представлена общая схема топки для утилизации ТКО.

Осуществление изобретения

Топка для утилизации ТКО представленная на фигуре, представляет собой корпус (1), внутри которого расположены две камеры – верхняя (2) и нижняя (3), разделенные неподвижной колосниковой решеткой (4). Между собой верхняя (2) и нижняя (3) камеры соединены посредством по меньшей мере одного хода рециркуляции (5). Для подачи первичного воздуха в топку, при ее запуске - для достижении рабочей температуры, используется патрубок (6) подачи первичного воздуха, который соединен с корпусом посредством хода рециркуляции. В дальнейшем в процессе утилизации ТКО, патрубок (6) перекрывается и воздух через него не поступает.

Топка выполнена из жаропрочной стали (например, 18ХН10Т).

По меньшей мере один ход рециркуляции (5) соединен с нижней (3) камерой таким образом, чтобы выходящий из него поток газа выходил по касательной к внутренней поверхности нижней (3) камеры для формирования вихревого восходящего потока. В нижней части нижней (3) камеры установлен по меньшей мере один газовый канал (7), соединенный с камерой дожига (8). В камере дожига (8) происходит дожигание газообразных продуктов горения. Для создания принудительной тяги в заявленной конструкции используется дымосос (9), соединенный с камерой дожига (8), посредством по меньшей мере одного газового канала (7). На тракте вывода газов, представляющем собой по меньшей мере один газовый канал (7), расположен датчик концентрации моноокиси углерода, соединенный с блоком управления дымососом (скоростью вывода отработанных газов)(на фигуре не указан).

Для съема выделяющегося тепла топка дополнительно может содержать теплообменник (10), соединенный с камерой дожига (8) и дымососом (9).

Для загрузки ТКО в топку, в корпусе (1) предусмотрен люк (11). Люк (11) соединен с корпусом (1) посредством петель.

Корпус (1) топки и ход рециркуляции (5) теплоизолированы, при этом в качестве изоляции могут быть использованы стандартные мулитовые теплоизоляционные материалы.

Теория топочных процессов включает вопросы газодинамики струй и течений, кинетики протекания очень различных химических реакций, связанных с повышенной температурой в области прохождения реакции, теплообмена с поверхностями топки и каналов и т.д. Многочисленность факторов делает оптимизацию конструкции топок весьма сложной задачей не только в теории, но и на практике даже для специалистов.

Заявленная топка сконструирована для утилизации ТКО. Основным критерием утилизации предполагается минимизация выбросов вредных веществ в атмосферу. Далее критерием эффективности топки предполагается считать высокое тепловое напряжение в топке и уменьшение количества получающихся в результате утилизации нерастворимых в воде зольных остатков.

Одна из основных проблем разработки топки заключалась в том, что при большой толщине слоя утилизируемых ТКО и большого перепада температур в слое ТКО, расположенном на колосниковой решетке наблюдается широкий спектр термохимических и каталитических реакций начиная от окисления и газификации до гидротермальной карбонизации (НТС Hydrothermal carbonization). Поэтому в основу конструкции положен слоевой принцип утилизации в восходящем вихревом потоке рециркуляционных газов.

Топка работает следующим образом. Сначала топка разогревается до температуры 800°С (например, с помощью газовой горелки, плазмотрона, угля, дров и т.д.) Далее ТКО загружается поверх неподвижной колосниковой решетки (4). Разогрев ТКО приводит к выделению горючих газов (газификация). Газы поднимаются вверх, разогревают расположенные выше слои ТКО, которые заполняют верхнюю (2) часть топки. Далее газы через ходы рециркуляции (5) под действием разности давления, создаваемого дымососом (9), вбрасываются по касательной в нижнюю (3) камеру формирования вихревого восходящего потока. Поднимающийся вихревой поток формирует по периметру восходящий поток газов высокой температуры и нисходящий поток газов пониженной температуры по центру нижней (3) камеры формирования вихревого потока. Поток газов пониженной температуры затягивается дымососом в камеру дожига (8) и далее отправляется в дымовую трубу (12), через дымосос (9). При содержании в дымовых газах моноокиси углерода более 80 РРМ блок управления увеличивает скорость движения дымовых газов путем повышения частоты электрического питания дымососа до уменьшения концентрации моноокиси до 20 единиц РРМ.

При газификации твёрдого топлива в газовую фазу переходит до 80% органической части топлива. Из-за нечувствительности к качеству сырья и наличию балластов (минеральных примесей и влаги) заявленная топка имеет большие перспективы для переработки низкосортных видов топлива (включая ТКО). Кроме того, полученное газообразное топливо при сжигании выделяет значительно меньшее количество вредных веществ, нежели при прямом сжигании твёрдого топлива.

Совокупность процессов, протекающих в ходе газификации приведена ниже:

C + O2 → CO2 + 408,9 кДж/моль

C + ½O2 → CO + 123,2 кДж/моль

C + CO2 → 2CO — 161,5 кДж/моль

C + H2O → CO + H2 — 136,9 кДж/моль

CO + H2O → CO2 + H2 + 42,8 кДж/моль

Полученные в ходе газификации газы посредством рециркуляции используются в качестве топлива непосредственно в объеме топки для поддержания теплового баланса и интенсификации процессов газификации.

В процессе рециркуляции газов в нижнем слое топлива, расположенном непосредственно на неподвижной колосниковой решетке (4), происходят реакции карбонизации. Стадии процесса искусственной карбонизации включают разрушение неароматических молекул; циклизацию - формирование более устойчивых ароматических молекул с боковыми цепями, которые в свою очередь разрушаются или циклизуются; конденсацию с образованием полициклических ароматических систем; и дальнейшее дегидрирование и конденсацию полициклических систем.

К вторичным реакциям можно отнести реакции образования смеси различных пастообразных углеводородов, с низким удельным содержанием водорода в молекулах соединений.

В процессе газификации проходят реакции синтеза более тяжёлых молекул из низкомолекулярных непредельных углеводородов. В основном, это реакции образования ароматических, конденсированных ароматических углеводородов.

Процесс гидрирования СО с образованием углеводородов является термодинамически выгодным. Если сравнить значения свободных энергий (∆G°), можно заметить, что реакции, которые протекают с образованием воды, являются наиболее выгодными.

3 H2 + 1 CO = H2O + CH4 ΔG° = –94 кДж/моль

2 H2 + 1 CO = H2O + 1/3(C2H6) ΔG° = –31 кДж/моль

2 H2 + 1 CO = CH3ОН ΔG° = +21 кДж/моль

4 H2 + 2 CO = CH3CH2OH + H2O ΔG° = –27 кДж/моль

3 H2 + 1 CO2 = CH3ОН + H2O ΔG° = +3 кДж/моль

H2O + 1 CO ⇄ H2 + CO2 ΔG° = –28 кДж/моль

Механизм реакции, несмотря на десятилетия его изучения, в деталях до сих пор остаётся неясен. Несмотря на термические превращения, протекающие при повышенных температурах, все реакции гидрирования являются каталитическими.

Катализаторами процесса гидрирования являются следующие металлы и соединения:

– металлы VIII группы (Fe, Co, Ni, Pd, Pt) и I группы (Cu, Ag) периодической системы элементов.

Камера и колосник изготовлены из нержавеющей стали (например, 18ХН10Т), содержащей помимо железа 9% никеля – что решает вопрос связанный с наличием катализатора в топке.

Кроме вышеперечисленного в топке могут проходить процессы образования углеводородов. Термодинамические закономерности процесса образования углеводородов можно обобщить следующим образом:

1. Возможно образование из СО и H2 углеводородов любой молекулярной массы, вида и строения.

2. Вероятность образования углеводородов уменьшается в ряду: метан – углеводороды линейного или разветвлённого строения с общей формулой CnH2n+2. Вероятность образования нормальных алканов снижается, а нормальных алкенов с общей формулой CnH2n— повышается с увеличением длины цепи.

Из сказанного следует, что достаточно эффективным параметром контроля процесса утилизации несмотря на широкий спектр имеющих место реакций является контроль содержания моноокиси углерода в отводимых газах.

Экспериментально обнаружено, что достаточным методом управления процессом служит скорость удаления отводимых газов посредством дымососа (9). Эксперименты показали, что повышение содержания СО в дымовых газах сопровождает ухудшение практически всех основных показателей процесса. Понижение давления в камере (что следует за увеличением скорости потока дымовых газов) приводит к повышению температуры процесса и увеличению скоростей карбонизации и газификации и уменьшению содержания СО в дымовых газах. Это достигается увеличением частоты переменного тока питающего дымосос (9). Управление частотой производится посредством сигнала, поступающего с газоанализатора через блок управления.

При загрузке ТКО в работающую топку (разогретую до 800°С) в объеме 1 м3 на теплообменнике выделялось 0,2 МВт тепла. Измерения поводились путем фиксации скорости прокачки теплоносителя через теплообменник и разности температур на выходе из теплообменника и входе теплообменника после радиатора, рассеивавшего тепловую мощность.

При регулировке режима работы топки объемом 0,5 м3, путем изменения скорости движения газов, были получены следующие значения по составу дымовых газов: СО до 4 PPM, СО2 до 7%, NOх до 6 PPM, SO3 до 6 PPM. Содержание кислорода в дымовых газов при утилизации автопокрышек зафиксировано в пределах 9-16 %.

1. Топка для утилизации твердых коммунальных отходов, включающая

корпус, внутри которого расположены две камеры – верхняя и нижняя, разделенные неподвижной колосниковой решеткой и соединенные между собой по меньшей мере одним ходом рециркуляции,

патрубок подачи первичного воздуха, соединенный с корпусом посредством хода рециркуляции,

камеру дожига, связанную с корпусом посредством по меньшей мере одного газового канала, и

дымосос, связанный с камерой дожига,

при этом по меньшей мере один ход рециркуляции соединен с нижней камерой и с возможностью направления выходящего из него потока газа по касательной к внутренней поверхности нижней камеры.

2. Топка по п. 1, которая дополнительно включает теплообменник, соединенный с камерой дожига и дымососом.



 

Похожие патенты:

Изобретение относится к области устройств для получения из древесины древесного угля и пиролизного газа для использования их в качестве топлива и сырья для последующей глубокой химической переработки.

Изобретение относится к области термической утилизации медицинских отходов, в том числе хлорсодержащих и инфицированных. Техническим результатом является предотвращение возможности образования диоксинов (ПХДД/Ф), обеспечение экологически безопасных выбросов, экономия энергоресурсов, и обеспечение автотермичности процесса, и, при необходимости, получение собственного средства для очистки дымовых газов.

Изобретение относится к области конструкций пиролизных установок, перерабатывающих отходы возобновляемого углеводородного сырья, в частности в виде древесной щепы, способом термического разложения и последующего применения получающихся продуктов.

Изобретение относится к оборудованию для комбинированной термической переработки твердых отходов органического происхождения с получением тепловой и электрической энергии.

Изобретение относится к области утилизации органических отходов и шламов, в частности осадков сточных вод, с получением гранулированного остеклованного шлака для дальнейшего его использования.

Изобретение относится к области жилищно-коммунального хозяйства и может быть использовано для экологически чистой переработки твердых коммунальных отходов. Пиролизный реактор включает камеру пиролиза с двойной внешней стенкой, через проем которой пропускают горячий газ для конвективного нагрева отходов для их термохимического разложения, и камеру сушки, установленную над камерой пиролиза, через которую пропускают отработанные горячие газы для предварительного нагрева и сушки отходов, камера пиролиза в сечении имеет форму протяженного овала с минимальной длиной короткой оси для максимального прогрева отходов между двумя раскаленными металлическими стенками, а по краям основания загрузочного бункера, камеры сушки и камеры пиролиза имеются прямоугольные отверстия, в которых смонтированы по два шунтирующих плоских затвора с электроприводами, между которыми расположены кольцевые активаторы с режущими лезвиями для рыхления и дробления отходов.

Изобретение относится к области переработки конденсированных топлив с получением горючего газа и может быть использовано для переработки различных твердых топлив для получения энергии.

Изобретение относится к охране окружающей среды и может быть использовано для переработки и утилизации полимерных компонентов коммунальных и промышленных отходов, а именно производства элементов строительных конструкций.

Изобретение относится к устройствам для термической переработки твердых коммунальных отходов и может быть использовано в жилищно-коммунальном хозяйстве для обезвреживания и уничтожения отходов с одновременным получением газообразного топлива.

Изобретение относится к области термической утилизации медицинских отходов, в том числе хлорсодержащих. Техническим результатом является создание условий, минимизирующих возможность образования диоксинов, обеспечение экологически безопасных выбросов, получение материалов для доочистки дымовых газов и обеспечение автотермичности процесса.

Изобретение относится к теплоэнергетике, а именно к системам отопления на твердом топливе и может быть использовано для создания отопительных котлов с повышенной эффективностью и расширенными функциональными возможностями.

Изобретение относится к области энергетики. Предлагается способ проведения процесса сжигания для топочных установок с колосниковой решеткой, при котором количество газа для первичного сжигания пропускают через топливо в зону первичного горения и в задней колосниковой зоне часть потока отходящего газа откачивают и эту часть потока отходящего газа снова подают в процесс сжигания в качестве газа внутренней рециркуляции.

Изобретение относится к теплоэнергетике, в частности к конструкции топок водогрейных котлов. Устройство для регулировки производительности котла на твердом топливе содержит бункер, расположенный под бункером барабанный колосник, ограничительную планку над барабаном, двигатель с редуктором, штангу, закрепленную на поворотно-зажимном механизме, установленным на оси барабанного колосника, двигатель с редуктором соединен с кривошипно-шатунным механизмом, конец шатуна которого выполнен с возможностью периодического контакта со штангой под углом.

Изобретение относится к области энергетики и может быть применено при сжигании твердого топлива. Устройство для газификации твердого топлива с применением механического и плазменного воздействия содержит блок дробления топлива, вихревой канал, форсунку для подачи топлива и плазмотроны, связанные между собой блоки первой и второй ступеней газификации, выполненные с обеспечением последовательного прохождения потока топлива и плазмы из блока первой ступени в блок второй ступени.

Изобретение относится к области коммунальной энергетики, в частности к котельной технике, и предназначено для форсированного сжигания твердого кускового топлива в жаротрубном котле, в том числе для сжигания угольных штыбов, а также для работы в условиях Крайнего Севера.

Изобретение относится к области энергетики. Теплогенератор состоит из пяти равных секций, расположенных вертикально одна на другой, каждая из которых состоит из коаксиально расположенных между собой внутренней и внешней цилиндрических оболочек, образуя между ними воздушное пространство, закрытое сверху и снизу, при этом четыре нижние секции, собранные вместе с внутренней стороны, по всей высоте обмурованы огнеупорным кирпичом с асбестовой прокладкой между ними, образуя внутри них единое объемное топочное пространство, накрытое сверху пережимом, который подвешен к пятой секции - секции съема тепла, при этом нижняя секция установлена на плоскую часть пода и имеет сквозное арочное отверстие с крышкой люка, облицованной изнутри огнеупорным кирпичом, и перекрытием воздушного пространства между оболочками, выступающим наружу за пределы внешней и внутренней цилиндрических оболочек, и два прямоугольных отверстия с крышкой люка на внешней оболочке, расположенные симметрично относительно центральной осевой линии пода, делящий его на две равные части, параллельной в вертикальной плоскости продольной оси сквозного отверстия металлической трубы, перекрывающей воздушное пространство между оболочками под установку конца шнекового транспортера дозатора бункера непрерывной подачи топлива, расположенного напротив арочного отверстия, при этом металлическая труба подачи топлива выступает наружу за пределы внешней и внутренней цилиндрических оболочек, а выступающая ее часть внутрь топочного пространства по длине не превышает толщину обмуровки, как и металлическое перекрытие, составляющее наружный свод арочного отверстия, при этом под, выложенный внутри обмуровки, имеет плоскую горизонтальную поверхность по ширине основания арочного отверстия до противоположной стороны обмурованной цилиндрической оболочки и с двух сторон плоского основания кладка пода постепенно возвышается в характерном сечении, перпендикулярном продольной оси металлической трубы, имеет с каждой стороны от плоской поверхности пода форму прямоугольника со ступенчатой диагональю, расположенной под углом 30° к горизонтальной поверхности плоской части пода, и в этом характерном сечении все прямоугольники подобные, а с наибольшей высотой прямоугольника находятся в средней его части и образуют перевернутую основанием вверх трапецию, за пределы которой не должны выходить края порядной кирпичной кладки, при этом внутри возвышающейся части кладки пода на втором и пятом рядах с двух сторон заложены прямоугольные трубы, большие стороны которых расположены в горизонтальной плоскости друг над другом в виде раскрытого веера, при этом концы узкой части веера расположены на внутренней цилиндрической оболочке с выходом их отверстий в воздушное пространство между оболочками напротив прямоугольных отверстий с крышками люка на внешней оболочке, а противоположные концы их не выходят за пределы кладки и находятся под смещенной от центрального канала кладкой таким образом, чтобы две крайние трубы были направлены: одна в сторону арочного отверстия, а другая в сторону отверстия подачи топлива, а остальные две трубы в каждом горизонтальном ряду расположены с равными промежутками между ними, при этом он оснащен дополнительными вентиляторами, которые установлены на внешней цилиндрической оболочке таким образом, чтобы прямоугольные выходные отверстия их патрубков были совмещены с прямоугольными отверстиями внешних цилиндрических оболочек всех четырех секций и располагались длинной стороной прямоугольного отверстия по образующей, выполненной по внешнему радиусу наружной оболочки таким образом, чтобы фронт поступающего воздушного потока совпадал с вертикальным сечением секции, проходящим через вертикальную ось оболочек и между вертикальной осью прямоугольного отверстия с крышкой люка на внешней оболочке и вертикальной осью арочного отверстия по часовой стрелке от прямоугольного отверстия к арочному отверстию, топочное пространство всех четырех секций посредством труб круглого сечения, расположенных равномерно по окружности, сообщается с воздушным пространством между оболочками, при этом эти трубы, расположенные в первой секции, наклонены вниз под углом 15° и направлены вниз топочного пространства на под, а трубы остальных трех секций расположены равномерно по окружности в горизонтальной плоскости и под углом 60° к касательной окружности внутренней цилиндрической оболочки и поддерживают циклоническое движение воздушного потока в топочном пространстве, при этом во второй и четвертой секциях эти трубы расположены в верхней ее части, а в третьей - снизу, верхняя пятая секция имеет два сквозных отверстия, расположенных напротив друг друга, в которые установлены патрубки для газоходов, при этом свободный конец патрубка газохода рециркуляции установлен в отверстие наружной цилиндрической оболочки, а свободный конец патрубка газохода к устройству очистки отходящих газов установлен с перекрытием воздушного пространства между оболочками, при этом на внутренней цилиндрической оболочке между этими сквозными отверстиями по окружности расположены дополнительные прямоугольные отверстия и сверху она закрыта крышкой с центральным отверстием, в котором расположена труба с регулируемой задвижкой, перекрывающей выход нагретых газов из топочного пространства в атмосферу.

Группа изобретений относится к области горения и газификации и предназначена для получения силового генераторного газа для производства электрической и тепловой энергии.

Изобретение относится к энерготехнологическому оборудованию, а именно к устройствам термической переработки твердого топлива в горючий газ, и может быть использовано для производства генераторного газа из древесных чурок.

Изобретение относится к химической технологии, в частности к комплексу утилизации отходов газификации. Комплекс содержит накопитель 1, газификатор 2, снабженный системой нижнего ворошения, блок детоксикации и переработки твердого побочного продукта газификации, который включает приемник твердого побочного продукта газификации - биочара 3, охладитель газа 4, приемник золы уноса 27, буфер золы уноса 28, охладитель побочного продукта 5, очиститель газа 6, причем охладитель газа 4 через приемник золы уноса 27 присоединен к входу очистителя газа 6.

Изобретение относится к способу и системе для торрефикации биомассы и сжигания образующихся газов торрефикации. Способ торрефикации биомассы и сжигания образующихся газов торрефикации включает следующие стадии: a) торрефикацию возможно предварительно высушенной биомассы в реакторе торрефикации с получением торрефицированной биомассы и газов торрефикации, b) отведение газов торрефикации из реактора торрефикации посредством пониженного давления, создаваемого первичным потоком воздуха, протекающим через эжекторную горелку и в первую зону горения, c) пропускание вторичного потока воздуха в первую зону горения для по меньшей мере частичного сжигания отведенных газов торрефикации с получением горячих отходящих газов, d) разделение горячих отходящих газов, полученных на стадии (с), на первый поток горячих отходящих газов и второй поток горячих отходящих газов посредством отведения первого потока горячих отходящих газов из первой зоны горения в блок смешивания газов, e) отведение второго потока горячих газов во вторую зону горения, f) пропускание третичного потока воздуха, при стехиометрическом или сверхстехиометрическом содержании кислорода, во вторую зону горения для дополнительного сжигания второго потока горячих отходящих газов с получением потока подвергнутых дополнительному сжиганию отходящих газов, g) отведение потока подвергнутых дополнительному сжиганию отходящих газов в теплоутилизатор, в котором снижают температуру потока подвергнутых дополнительному сжиганию отходящих газов, полученных на стадии (f), с получением потока холодных отходящих газов, h) отведение части холодных отходящих газов, полученных на стадии (g), в блок смешивания газов, так что поток холодных отходящих газов смешивается с первым потоком горячих отходящих газов с получением потока частично охлажденных отходящих газов, i) отведение потока частично охлажденных отходящих газов, полученных на стадии (h), в реактор торрефикации, так что возможно предварительно высушенная биомасса вступает в прямой контакт с указанным потоком частично охлажденных отходящих газов, так что возможно предварительно высушенную биомассу нагревают непосредственно с помощью потока частично охлажденных отходящих газов.

Изобретение относится к устройствам для утилизации твердых коммунальных отходов, в частности, при термической переработке мусора, бытовых и промышленных отходов. Топка для утилизации ТКО включает корпус, внутри которого расположены две камеры – верхняя и нижняя, разделенные неподвижной колосниковой решеткой и соединенные между собой по меньшей мере одним ходом рециркуляции, патрубок подачи первичного воздуха, соединенный с корпусом посредством хода рециркуляции, камеру дожига, связанную с корпусом посредством по меньшей мере одного газового канала, и дымосос, связанный с камерой дожига, при этом по меньшей мере один ход рециркуляции соединен с нижней камерой и с возможностью направления выходящего из него потока газа по касательной к внутренней поверхности нижней камеры. Топка дополнительно включает теплообменник, соединенный с камерой дожига и дымососом. Технический результат изобретения направлен на обеспечение следующих возможностей: улучшение экологических показателей, снижение суммарной величины тепловых потерь с химическим и механическим недожогом на выходе из топки до 10, отсутствие необходимости внесения дополнительных источников топлива в процессе утилизации ТКО. 1 з.п. ф-лы, 1 ил.

Наверх