Электродный материал для электрохимических устройств

Изобретение относится к электродным материалам на основе никелита празеодима, которые могут быть использованы в среднетемпературных электрохимических устройствах, таких как твердооксидные топливные элементы, электролизеры, сенсоры и других на основе протонпроводящих электролитов, принадлежащих семейству церато-цирконатов бария. Материал содержит никелит празеодима, модифицированный медью, и имеет состав Pr2Ni0.8Cu0.2O4+δ, и характеризуется снижением температуры припекания к протонпроводящему электролиту на основе церато-цирконатов бария, что является техническим результатом изобретения. Модифицирование никелита празеодима медью также способствует улучшению адгезии с протонопроводящим электролитом на основе церато-цирконатов бария. 3 ил., 1 пр.

 

Изобретение относится к электродным материалам на основе никелита празеодима, которые могут быть использованы в среднетемпературных электрохимических устройствах, таких как твердооксидные топливные элементы, электролизеры, сенсоры и других на основе протонпроводящих электролитов, принадлежащих семейству церато-цирконатов бария.

Известны результаты исследования свойств электродного материала состава La2Ni0.9Cu0.1O4+δ, полученного модифицированием исходного материала состава La 2NiO4+δ медью [1]. Установлено, что полученный таким образом материал имеет высокую температуру припекания к протонпроводящим электролитам на основе церато-цирконатов бария.

Известен электродный материал на основе никелита празеодима состава Pr2NiO4+δ, обладающий высокой электропроводностью (70 См·см-1 при 600 °С) и приемлимым для электрохимических устройств значением ТЛКР [2]. При этом из публикации [2] следует, что значение поляризационного сопротивления, которое относится к одной из основных характеристик материала, применяемого в качестве катода в твердооксидных топливных элементах, а также величина температуры припекания к протонпроводящим электролитам на основе церато-цирконатов бария, не определены.

Задача настоящего изобретения состоит в разработке электродного материала для применения в электрохимических устройствах на протонпроводящих электролитах, принадлежащих семейству церато-цирконатов бария.

Для этого предложен электродный материал для электрохимических устройств, содержащий никелит празеодима, который отличается тем, что содержит никелит празеодима, модифицированный медью и имеет состав Pr2Ni0.8Cu0.2O4+δ.

Исследования показали, что модифицирование никелита празеодима медью способствует улучшению адгезии этого материала с протонпроводящим электролитом на основе церато-цирконатов бария и снижению температуры припекания к этому типу электролитов. При этом значения электропроводности, поляризационного сопротивления и ТЛКР полученного материала остаются приемлимыми для применения в качестве катода электрохимических устройств.

Новый технический результат, достигаемый заявленным изобретением, заключается в снижении температуры припекания электродного материала на основе никелита празеодима к протонпроводящему электролиту на основе церато-цирконатов бария.

Фиг. 1,2,3 иллюстрируют заявленный материал состава Pr2Ni1–xCuxO4+δ, где x=0, 0.1, 0.2 и 0.3. При этом на фиг. 1 приведены данные рентгенофазового анализа этого материала; на фиг. 2 – величина поляризационного сопротивления электродов, изготовленных из этого материала; на фиг. 3 представлены его дилатометрические кривые. Значение коэффициента δ в составе заявленного материала Pr2Ni1–xCuxO4+δ, не указано, поскольку данный материал относится к сложнооксидным соединениям, для которых величина δ не принимает постоянных значений, а варьируется в зависимости от внешних условий. Метод раскрытия значений коэффициента δ для специалиста в области химии твердого тела известен [3].

Заявляемый материал получали с применением метода цитрат-нитратного сжигания из прекурсоров Pr(NO3)3, Cu(NO3)2 и Ni(NO3)2. Исходные соли растворяли в дистиллированной воде с добавлением лимонной кислоты в соотношении 1.5 молекулы кислоты к 1 катиону металла в растворе. Затем раствор нагревали до 150 °С до частичного выпаривания воды и образования прозрачного геля. Этот гель нагревали при 350 °С до его самовоспламенения. В результате сгорания образовывались мелкодисперсные порошки требуемого состава. Полученные порошки синтезировали двухстадийно при 1100 °С и 1150 °С в течение 5 ч и спекали при 1450 °С в течение 5 ч.

Рентгенофазовый анализ, выполненный на дифрактометре Rigaku D/MAX-2200VL/PC, показал, что спеченный образец состава Pr2Ni0.8Cu0.2O4+δ (фиг.1), является однофазным и обладает структурой типа каменной соли, принадлежащей к рядам Раддлесдена-Поппера.

Значение электропроводности материала состава Pr2Ni0.8Cu0.2O4+δ, измеренной четырехзондовым методом на постоянном токе, составляет 57 См·см–1 при 600 °С.

Величина поляризационного сопротивления электродов, выполненных из материала состава Pr2Ni0.8Cu0.2O4+δ, определяли с помощью электрохимической импедансной спектроскопии в диапазоне рабочих температур электрохимических устройств (550–700 °С) при помощи потенциостата-гальваностата Amel 2550 и частотного анализатора спектров Amel 2700 Z-Pulse (фиг.2). Показано, что замещение ионов никеля на ионы меди приводит к снижению поляризационного сопротивления, значение которого при 650 °С составляет 1.4 Ом·см2.

Исследование термомеханических свойств материала Pr2Ni0.8Cu0.2O4+δ проводили на Netzsch DIL 402 РC на воздухе в широком интервале температур от 100 до 1000 ºC для детального изучения ТКЛР. На основе полученных дилатометрических кривых было рассчитано значение ТКЛР, которое для данного материла составляет 12.65·10–6К–1 (фиг. 3).

Температура припекания электродов состава Pr2Ni0.8Cu0.2O4+δ к электролиту на основе BaCe0.6Zr0.2Y0.2O3–δ составила 900 °С с выдержкой в течение 0.5 ч. Следует отметить, что улучшенная адгезия полученного материала к данному типу электролита, позволила не только снизить температуру, но и длительность изотермической выдержки при припекании электродов к электролиту на основе церато-цирконатов бария.

Таким образом, получен твердооксидный электродный материал на основе никелата празеодима, модифицированного медью, характеризующийся снижением температуры припекания электродного материала на основе никелита празеодима к протонпроводящему электролиту на основе церато-цирконатов бария.

Источники информации:

1. A.P. Tarutin et al. Cu-substituted La2NiO4+δ as oxygen electrodes for protonic ceramic electrochemical cells // Ceram. Int. 2019. V. 45. P. 16105–16112.

2. V. A. Sadykov et al. Tailoring the structural, thermal and transport properties of Pr2NiO4+δ through Ca-doping strategy // Solid State Ionics 2019. V. 333. P. 30–37.

3. A.P. Tarutin et al. Barium-doped nickelates Nd2–xBaxNiO4+δ as promising electrode materials for protonic ceramic electrochemical cells // Ceram. Int. 2020. V. 46. P. 24355–24364.

Электродный материал для электрохимических устройств, содержащий никелит празеодима, отличающийся тем, что материал содержит никелит празеодима, модифицированный медью, и имеет состав Pr2Ni0.8Cu0.2O4+δ.



 

Похожие патенты:

Изобретение относится к анодам твердооксидных топливных элементов, к композициям, используемым при изготовлении анодов, к способам изготовления анодов. Анод для твердооксидного топливного элемента содержит: матрицу, содержащую легированный оксид металла; и электрокатализатор, причем электрокатализатор содержит пористые частицы, поддерживаемые матрицей, причем пористые частицы содержат каталитический материал парового риформинга, заключенный внутри пор пористых частиц.

Изобретение относится к области электротехники, а именно к элементам батарей среднетемпературных электрохимических устройств для получения электроэнергии, и может быть использовано для создания твердооксидных топливных элементов (ТОТЭ).

Изобретение относится к формированию единичных многослойных ячеек, которые могут быть использованы в качестве основы твердооксидных топливных элементов (ТОТЭ) или твердооксидных электролизеров (ТОЭ).

Изобретение относится к высокопористым электродным материалам на основе никелата неодима, которые могут быть использованы в качестве воздушных электродов для электрохимических устройств на основе протонпроводящих электролитов, включая твердооксидные топливные элементы, сенсоры и электролизеры.

Изобретение относится к области электрохимии, а именно к устройству конструкционных элементов водородных насосов и топливных элементов, конкретно к устройству водородных электродов.

Изобретение относится к электродному катализатору для топливных элементов. Электродный катализатор для топливных элементов содержит углеродный материал, имеющий отношение пиковой интенсивности IA, полученной от аморфной структуры, к пиковой интенсивности IG, полученной от графитовой структуры в спектре рентгеновской дифракции (отношение IA/IG), равное 0,90 или менее, в качестве поддерживающего катализатор носителя.

Изобретение относится к катоду для металло-воздушных источников тока. Катод включает основу из пористого проницаемого для молекулярного кислорода электропроводящего материала, на рабочую поверхность которого нанесен сополимер, полученный путем сополимеризации мономерного комплексного соединения переходного металла с основанием Шиффа и мономера из группы тиофенов.

Изобретение относится к электроду для топливного элемента, который содержит углеродные нанотрубки; катализатор для топливного элемента, нанесенный на углеродные нанотрубки; и иономер, обеспеченный так, чтобы покрывать углеродные нанотрубки и катализатор для топливного элемента, причем, если длина углеродных нанотрубок обозначена как La [мкм], а шаг между центрами углеродных нанотрубок обозначен как Ра [нм], то длина La и шаг Ра между центрами удовлетворяют двум выражениям, приведенным ниже: 30≤La≤240; и 0,351×La+75≤Ра≤250.

Изобретение относится к металловоздушному источнику тока и его катоду. Катод включает основу из пористого проницаемого для молекулярного кислорода электропроводящего материала, на рабочей поверхности которого нанесено полимерное комплексное соединение переходного металла с основанием Шиффа, имеющие стековую структуру, в которой отдельные фрагменты упомянутого полимерного соединения связаны между собой благодаря донорно-акцепторному взаимодействию, например соединение вида poly-[M(R, R′-Salen)], poly-[M(R, R′-Saltmen)] или poly-[M(R, R′-Salphen)].
Изобретение относится к области электротехники, а именно к способу изготовления гидрофобизированного катализатора, используемого в электродах топливного элемента (ТЭ) для прямого преобразования химической энергии в электрическую.

Изобретение относится к электродным материалам на основе фосфатов, оксофосфатов и фторидофосфатов переходных металлов и натрия и может быть использовано для производства натрий-ионных аккумуляторов.
Наверх