Полупроводниковый датчик диоксида азота

Изобретение относится к области газового анализа, в частности к полупроводниковым датчикам диоксида азота. Полупроводниковый датчик диоксида азота содержит полупроводниковое основание, нанесенное на непроводящую подложку, при этом полупроводниковое основание выполнено из поликристаллической пленки твердого раствора состава (InAs)0,18(CdTe)0,82. Техническим результатом является повышение чувствительности датчика. 2 ил., 1 табл.

 

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей диоксида азота (NO2). Изобретение может быть использовано для решения задач экологического контроля.

Известен датчик (детектор) по теплопроводности, действие которого основано на различии между теплопроводностью паров вещества и газа-носителя (Вяхирев Д.А., Шушукова А.Ф. Руководство по газовой хроматографии. М.: Высш. школа, 1987. - 287 с). Однако, чувствительность такого датчика (детектора) ограничивается на вещества с теплопроводностью, близкой к теплопроводности газа-носителя. Например, при использовании этого датчика для анализа диоксида азота точность определения невысока.

Известен также датчик (сенсор) диоксида азота, состоящий из подложки, выполненной из поликристаллического Al2O3, чувствительного слоя в виде тонкой пленки из нанокристаллического диоксида олова, в который дополнительно введены наночастицы оксида никеля и золота, и платиновых электродов (Патент RU№ 2464554 М. кл. G01N 27/12, опубл. 20.10.2012). Газовый сенсор для индикации диоксида азота/А.М. Гаськов, М.Н. Румянцева, 2012), позволяющий определять содержание диоксида азота с большей чувствительностью, но имеющий ряд недостатков.

Недостатками известного устройства являются низкая селективность по отношению к NO2 (проявляет чувствительность и к СО), сложность конструкции, относительно высокая (по сравнению с комнатной) рабочая температура (125-200 °С), использование драгоценных металлов (Au, Pt), длительность и трудоемкость (сложность) его изготовления: формирование пленки чувствительного элемента происходит в несколько стадий, включая получение геля оловянной кислоты, промывку и сушку, модификацию поверхности диоксида олова золотом и оксидом никеля, сушку и последующую прокалку в температурном режиме: 80°С - 24 ч., 120°С - 10 ч., 160°С - 10 ч., 200°С - 10 ч., 300°С - 10 ч. и 350°С - 24 ч., нанесение платиновых электродов. Осуществление такого способа изготовления газового сенсора, отличающегося многостадийностью технологических операций, сопряжено с большими временными затратами.

Ближайшим техническим решением к изобретению (прототипом) (патент RU №2437087, опубл.20.12.2011г.) является газовый датчик, состоящий из полупроводникового основания, выполненного из поликристаллической пленки антимонида индия, легированного сульфидом кадмия, и подложки, которой служит электродная площадка пьезокварцевого резонатора.

Недостатками такого устройства является его недостаточная чувствительность при контроле микропримесей диоксида азота. Кроме того, конструкция устройства предусматривает в процессе его изготовления разработки специальной технологии, режима, программы температурного контроля и сам процесс легирования антимонида индия; операции напыления металлических электродов и прямых трудоемких адсорбционных измерений.

Техническим результатом изобретения является создание датчика, характеризующегося повышенной чувствительностью и технологичностью его изготовления.

Указанный технический результат достигается тем, что в известном газовом датчике, содержащем полупроводниковое основание, нанесенное на электродную площадку пьезокварцевого резонатора, согласно изобретению, полупроводниковое основание выполнено в виде поликристаллической пленки твердого раствора состава (InAs)0,18(CdTe)0,82 нанесенной на непроводящую подложку.

Сущность изобретения поясняется чертежом и таблицей, где представлены:

на фиг. 1 - конструкция заявляемого датчика;

на фиг. 2 - градуировочная кривая зависимости изменения pH изоэлектического состояния поверхности (∆pHизо) полупроводникового основания в процессе адсорбции при комнатной температуре от начального давления NO2 (PNO2);

в таблице - данные по влиянию диоксида азота на pH изоэлектрического состояния поверхности (∆pHизо) твердого раствора (InAs)0,18(CdTe)0,82.

Таблица демонстрирует заметное влияние диоксида азота на pHизо поверхности полупроводникового основания - поликристаллической пленки твердого раствора (InAs)0,18(CdTe)0,82, а градуировочная кривая наглядно указывает на высокую чувствительность полупроводникового основания к диоксиду азота.

Датчик состоит из полупроводникового основания 1, выполненного в виде поликристаллической пленки (InAs)0,18(CdTe)0,82, и непроводящей подложки 2 (фиг.1).

Принцип работы такого датчика основан на адсорбционно-десорбционных процессах, протекающих на полупроводниковой пленке, нанесенной на непроводящую подложку, и вызывающих изменение pH изоэлектрического состояния и, соответственно, силы активных центров ее поверхности.

Работа датчика осуществляется следующим образом.

Датчик помещают в находящуюся при комнатной температуре камеру (ею может быть обычная стеклянная трубка), через которую пропускают (или в которой выдерживают) анализируемый на содержание диоксида азота газ. При контакте пропускаемого газа с поверхностью полупроводниковой пленки (InAs)0,18(CdTe)0,82 происходит избирательная адсорбция молекул NO2 и изменение pH изоэлектрического состояния поверхности. С помощью градуировочных кривых можно определить содержание диоксида азота в исследуемой среде.

Из анализа приведенной на фиг. 2. типичной градуировочной кривой, полученной с помощью заявляемого датчика и выражающей зависимость ∆pHизо от содержания диоксида азота (PNO2), следует: заявляемый датчик при существенном упрощении технологии его изготовления позволяет определять содержание диоксида азота с чувствительностью, в несколько раз превышающей чувствительность известных датчиков. Существенное упрощение технологии изготовления датчика обусловлено исключением разработки специальной технологии, режима, программы температурного контроля, самого процесса легирования полупроводникового основания, а также исключением операций нанесения на полупроводниковое основание металлических электродов и трудоемких измерений адсорбции.

Малые габариты устройства (рабочий объем менее 0,2 см3) в сочетании с малой массой пленки - адсорбента позволяют снизить постоянную датчика по времени до 10-20 мс.

Конструкция заявляемого датчика позволяет также улучшить и другие характеристики: быстродействие, регенерируемость, способность работать не только в статическом, но и динамическом режиме.

Таблица

Значения pH изоэлектрического состояния поверхности твердого раствора (InAs)0,18(CdTe)0,82 при различных обработках

Значения pH изоэлектрического состояния (рНизо) поверхности твердого раствора (InAs)0,18(CdTe)0,82
Экспонирование на воздухе Экспонирование в аргоне Экспонирование в диоксиде азота
6,25 5,25 4,6

Полупроводниковый датчик диоксида азота, содержащий полупроводниковое основание, нанесенное на непроводящую подложку, отличающийся тем, что полупроводниковое основание выполнено из поликристаллической пленки твердого раствора состава (InAs)0,18(CdTe)0,82.



 

Похожие патенты:

Изобретение может быть использовано для измерения содержания оксида азота (NO) в воздухе. Согласно изобретению в поток анализируемого воздуха помещают электрохимическую ячейку с полостью, образованной двумя, газоплотно соединенными между собой дисками из кислородпроводящего твердого электролита состава 0,9 ZrO2 + 0,1Y2O3, между которыми имеется капилляр, на электроды, расположенные на противоположных поверхностях одного из дисков, подают напряжение постоянного тока в пределах 0,5 - 1В, с подключением положительного полюса на наружный электрод, посредством чего осуществляют откачку из полости ячейки свободного кислорода и кислорода, полученного после разложения оксида азота, при достижении стационарного состояния, когда количество кислорода, откачанного из полости ячейки, станет равным количеству кислорода, поступающему в эту полость через капилляр, измеряют протекающий через ячейку суммарный предельный ток, соответствующий содержанию кислорода, находящегося в анализируемом воздухе, плюс кислород, образовавшийся от разложения оксида азота, и после вычитания из суммарного предельного тока предельного тока, соответствующего содержанию кислорода в воздухе, определяют концентрацию оксида азота в анализируемом воздухе по предложенной формуле.

Изобретение относится к области технических средств для обнаружения мин, невзорвавшихся боеприпасов и взрывчатых веществ на железных дорогах. Устройство включает в себя облегченную путевую тележку из композитных материалов, оснащенную датчиками поиска взрывчатых веществ, видеоаппаратуру, соединенную жесткой сцепкой с проложенными по ней кабелями с бронированным транспортным средством на комбинированном ходу, оборудованным устройствами вывода информации, станцией, обеспечивающей радиоэлектронное прикрытие путем создания помех в широком спектре, рабочим местом оператора и грузовым отсеком для перевозки оборудования.

Изобретение относится к средствам для анализа многокомпонентных газовых сред, содержащих различные газы и летучие органические соединения, и может применяться, например, для анализа выдыхаемого человеком воздуха с целью диагностики заболеваний или для анализа воздуха жилых и производственных помещений.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей диоксида азота. Изобретение может быть использовано в экологии.

Изобретение относится к системам мониторинга и защиты торфяников от возгорания в любой период года с возможностью конкретизации места и площади возгорания и может найти применение в работе (ЕДДС) города и области, а также в системе «Безопасный город». Наряду с ранее сказанным данное изобретение может быть использовано подразделениями МЧС России для оперативного реагирования на возможность возникновения ЧС на торфяниках, а также составления карт текущего состояния торфяных болот.

Изобретение относится к области электротехники, а именно к пространственному и временному мониторингу материала, и может быть использовано в промышленности и экспериментальных процессах. Представлены устройство, система и способ для применения в регистрации данных от текучей среды внутри области материала при проведении кучного выщелачивания.

Изобретение относится к неразрушающему контролю и может быть использовано для высокопроизводительного контроля качества, включающего сканирование поверхности контролируемого объекта. Сущность изобретения заключается в том, что многоэлементный вихретоковый преобразователь снабжен идентичными двум первым M дополнительными линейками с осями, параллельными оси х, соседние основные и дополнительные линейки последовательно смещены относительно друг друга по оси у на величину Dy, а каждая последующая k+1-я линейка (k = 1, 2,…, M+1) смещена по оси х относительно предыдущей k-й линейки на величину dсм =Dх/(M+2).

Изобретение относится к области исследования свойств веществ, а именно к определению тока электрически заряженных частиц в выхлопной струе авиационного газотурбинного двигателя (ГТД) в полете. Технический результат: повышение точности измерения тока двигателя, упрощение процедуры оборудования самолета.

Изобретение относится к области физико-химических измерений и может быть использовано для контроля качества гальванических покрытий изделий, в частности для изделий, имеющих внутреннюю полость. Измерение величины силы тока в электрохимической ячейке между рабочим электродом из материала покрытия, например, хромовым и вспомогательным платиновым электродом при поддержании потенциала рабочего электрода равным потенциалу, самопроизвольно устанавливающемуся на внутренней поверхности изделия с гальваническим покрытием.

Изобретение может быть использовано для онлайн-наблюдения промышленных процессов, затрагивающих многофазные текучие среды. Система для наблюдения по крайней мере одного характеристического свойства многофазной текучей среды содержит по меньшей мере одну пару электродов, погруженных в многофазную текучую среду и определяющих область выборки, расположенную между ними, средство формирования сигнала, сконфигурированное, чтобы формировать и прикладывать электрический сигнал, по меньшей мере, между одной парой электродов, средство измерения, сконфигурированное для измерения электрического параметра многофазной текучей среды в области выборки, измеренный электрический параметр принудительно изменяется в ответ на протекание электрического тока по меньшей мере между одной парой электродов, и процессор, сконфигурированный, чтобы вычислять данные относительного импеданса, соответствующие отношению величины электрического импеданса по меньшей мере одной фазовой составляющей многофазной текучей среды в области выборки, измеренной при первом выбранном значении частоты, относительно величины электрического импеданса по меньшей мере одной другой фазовой составляющей, измеренной при втором выбранном значении частоты, при этом значение или степень изменения данных относительного импеданса является пропорциональным по меньшей мере одному характеристическому свойству по меньшей мере одной фазовой составляющей многофазной текучей среды.

Изобретение относится к области газового анализа, точнее к определению ионного числа переноса твердых электролитов с протонной проводимостью. Сущность изобретения заключается в том, что способ определения ионного числа переноса в твердых электролитах с протонной проводимостью дополнительно содержит этап, на котором определяют ионное число переноса протонпроводящего твердого электролита по формуле: = I2(предельный)/I1(предельный), где: – ионное число переноса протонпроводящего твердого электролита при известной температуре и концентрации водорода в газовой смеси водорода с инертным газом; I2(предельный) – предельный ток, протекающий через водородпроводящую электрохимическую ячейку; I1(предельный) – предельный ток, протекающий через кислородпроводящую электрохимическую ячейку.
Наверх