Противоизносная присадка к ультрамалосернистому дизельному топливу

Изобретение раскрывает присадку к ультрамалосернистому дизельному топливу, которая содержит дистиллированные жирные кислоты растительных масел, выделяемые из продуктов переработки масличных культур, характеризуется тем, что дополнительно содержит легкое изопарафиновое масло гидрокрекинга при следующем соотношении компонентов, мас.%: дистиллированные жирные кислоты растительных масел 40,0-70,0; легкое изопарафиновое масло гидрокрекинга 30,0-60,0. Технический результат: создание присадки к ультрамалосернистому дизельному топливу с более низкой себестоимостью и расширение ресурсов сырья для ее выработки. 7 табл.

 

Изобретение относится к нефтепереработке и нефтехимии, в частности к присадкам к ультрамалосернистым дизельным топливам с содержанием серы менее 10 ppm.

В соответствии с требованиями Технического регламента Таможенного союза ТР/ТС 013/2011 дизельное топливо, вырабатываемое и поступающее в свободное обращение в России, должно соответствовать по качеству классу 5, в частности, содержать не более 10 ppm серы. Практически полное удаление серы из топлива существенно улучшает его экологические характеристики, но ухудшает противоизносные (смазывающие) свойства. Так как дизельное топливо одновременно является смазкой для прецизионных пар трения двигателя (топливных насосов высокого давления, форсунок и т.д.), это приводит к повышенному износу деталей двигателя и снижает его ресурс.

Для улучшения смазывающих свойств топлива в него вводят противоизносные присадки. В основном, это карбоновые кислоты, их эфиры или амиды (A.M. Данилов. Применение присадок в топливах. 3-е издание. СПб.: Химиздат. 2010. 364 с).

Известна присадка на основе карбоновых кислот, при этом она дополнительно содержит полиэтиленполиамин, а в качестве карбоновых кислот используются технические алкил(С1618)салициловые кислоты при массовом соотношении полиэтиленполиамин: технические алкил(С1618)салициловые кислоты, равном 0,007-0,035:1,0. (RU 2529678, 2014).

Недостатком данной присадки является недостаточная противоизносная эффективность.

Предложена также присадка на основе сложных эфиров органических кислот, амидо-имидазалинов и аминов характеризующаяся тем, что содержит сложные эфиры, полученные с помощью процесса этерификации жирных кислот различных растительных масел, и дополнительно содержит амидо-имидазолины и амины, содержащие от 21 до 31 атомов углерода, при следующем соотношении компонентов, % мас.: сложные эфиры, полученные с помощью процесса этерификации жирных кислот различных растительных масел 40-41; амидо-имидазолины 36-37; амины, содержащие от 21 до 31 атомов углерода, остальное. (RU 2723116, 2020).

Недостатком этой присадки является сложность ее состава, а также сравнительно высокая стоимость, что уменьшает ее конкурентоспособность перед зарубежными аналогичными присадками и затрудняет выполнение программы импортозамещения.

Известны присадки, содержащие жирные кислоты таллового масла (RU 2410414, 2011), или дистиллированные жирные кислоты таллового масла в смеси с 5-60% мас. полиалкилбензолов (RU 2267518, 2006), или в смеси с четвертичными аммониевыми производными на основе аминов талловых масел при соотношении от 0,66:1 до 4:1 (RU 2422495, 2011).

Среди присадок, содержащих дистиллированные кислоты таллового масла, можно также выделить присадки, представляющие собой композиции жирных кислот таллового масла с углеводородным растворителем - головной фракцией гидродепарафинизированного жидкого топлива в соотношении (1-5):1 (RU 2401861, 2010), а также с метилалкиловыми эфирами С56 при массовом соотношении жирные кислоты таллового масла: метилалкиловые эфиры С56, соответственно, 80-90:10-20 (RU 2634726, 2017).

Недостатком этих присадок является высокая себестоимость, объясняемая высокой ценой основного сырья - жирных кислот таллового масла, а также плохая совместимость с водой и моторным маслом. Кроме того, большинство из этих присадок в ультрамалосернистых топливах проявляют недостаточно высокую эффективность, в результате чего их применение невыгодно.

Наиболее близкой к заявляемой является присадка к ультрамалосернистому дизельному топливу, которая содержит углеводородный растворитель, жирные кислоты таллового масла и дополнительно жирные кислоты растительных масел следующего состава, мас. %:

- жирные кислоты таллового масла - 25-75;

- жирные кислоты растительного масла - 15-65;

- растворитель - остальное.

(RU 2641736, 2018).

Недостатком известной композиции является высокая себестоимость присадки, объясняемая высокой ценой основного сырья - жирных кислот таллового масла.

Задачей настоящего изобретения является создание присадки к ультрамалосернистому дизельному топливу с более низкой себестоимостью и расширение ресурсов сырья для ее выработки.

Для решения поставленной задачи предложена присадка к ультрамалосернистому дизельному топливу, содержащая дистиллированные жирные кислоты растительных масел (ЖКРМД), выделяемые из продуктов переработки масличных культур, отличающаяся тем, что дополнительно содержит легкое изопарафиновое масло гидрокрекинга при следующем соотношении компонентов, % мас:

дистиллированные жирные кислоты растительных масел 40,0-70,0
легкое изопарафиновое масло гидрокрекинга 30,0-60,0

В качестве примера использования ЖКРМД, выделяемых из продуктов переработки масличных культур, показано использование дистиллированных жирных кислот, выделяемых из продуктов переработки технического подсолнечного масла, вырабатываемого рядом масложировых комбинатов. Обобщенная характеристика дистиллированных жирных кислот растительного масла представлены в таблице 1.

Легкое изопарафиновое масло гидрокрекинга вырабатывается в АО «ТАНЕКО» со следующими характеристиками (таблица 2).

Эффективность присадок проверялась в базовом топливе «Л» производства АО «ТАНЕКО», отбираемом с установки до ввода противоизносной присадки. Его основные характеристики представлены в таблице 3.

Для иллюстрации предлагаемого технического решения были изготовлены образцы с разным соотношением компонентов (таблица 4). Были использованы в качестве активного компонента образцы ЖКРМД, выделяемые из продуктов технического подсолнечного масла, ООО «Стерх» (Белгородская обл.).

Противоизносные свойства композиции оценивали по методу ASTM D-6079, включенному в ТУ 38.401-58-206-2001 «Топливо дизельное автомобильное». Согласно этому методу стальной шарик под нагрузкой 20 кПа (0,2 кг/см) посредством вибратора совершает возвратно-поступательные движения с амплитудой 1 мм и частотой 50 Гц по пластине, помещенной в испытательную среду. Температура испытания - 60°С. Образующееся пятно износа измеряют по двум диаметрам (поперек и по направлению движения) и вычисляют среднее значение, которое и является противоизносной характеристикой испытуемого образца. Нормой противоизносных свойств дизельного топлива по требованиям TP ТС 013/2011 является диаметр пятна износа не более 460 мкм. Так как точность метода - 20% отн., предусматривают запас противоизносных свойств, в результате чего рекомендуемое значение диаметра пятна износа - не более 410 мкм.

Результаты испытаний приведены в таблице 5. Они свидетельствуют о том, что все образцы характеризуются одинаковыми в пределах ошибки измерения противоизносными свойствами между собой и значительно превосходят значения базового топлива.

Все же, относясь к полученным результатам как к тенденции, следует отметить, что наибольшую эффективность показывают образцы с содержанием ЖКРМД от 40 до 70% мас.(примеры 2-4). При меньшем содержании ЖКРМД показывает наихудший результат (пример 1), при большем (пример 5) - не показывает повышения смазывающей способности, и передозировка более дорогого компонента ЖКРМД, нежелательна.

Для дальнейших испытаний с целью оценки влияния присадки на физико-химические и эксплуатационные свойства дизельного топлива был изготовлен опытный образец присадки по примеру 3, характеристика которого представлена в таблице 6.

Влияние присадки на физико-химические свойства дизельного топлива представлено в таблице 7.

Обычная концентрация противоизносных присадок в дизельном топливе составляет 100-300 г/тонну (0,01-0,03% мас). В данном случае для большей вероятности выявления влияния присадки на топливо, она введена в топливо в повышенной концентрации - 0,07% мас.

Как следует из таблицы 7, введение разработанной противоизносной присадки практически не влияет на физико-химические свойства дизельного топлива.

Для противоизносных присадок к дизельному топливу существует ряд обязательных испытаний:

- на совместимость с водой;

- на совместимость с моторным маслом;

- на стабильность при холодном хранении.

Ниже приводятся описания этих методов и полученные результаты

Испытания на совместимость с водой проводили по методу DGMK-531 I-B «Взаимодействие с водой (эмульгируемость)», включенному в российский комплекс методов квалификационной оценки дизельных топлив. Этот метод позволяет оценивать склонность топлива к образованию стабильных эмульсий «топливо-вода».

Он заключается в перемешивании дизельного топлива с испытуемой присадкой с дистиллированной водой с последующим отстаиванием и оценкой состояния границы раздела фаз. Для этого используют следующую оценочную таблицу:

Такую операцию проводят пять раз. Топливо считается выдержавшим испытания, если после пятого раза граница раздела фаз оценивается не более чем в 2 балла.

В результате испытаний дизельное топливо с 0,07% мас. присадки оценено в 2 балла.

Совместимость топлива с предлагаемой присадкой с моторным маслом. Для этого 10 г присадки и 10 г масла смешивали, гомогенизировали и растворяли в 500 мл топлива. Этот раствор хранили в течение 3 суток при 90°С, затем охлаждали до температуры окружающей среды и оценивали визуально. Кроме того, определяли фильтруемость раствора по методике SEDAB. После хранения образец топлива с присадкой и маслом по внешнему виду не отличался от исходного топлива. Время его фильтрации составило: для чистого топлива - 90 с, для топлива с маслом без присадки - 464 с, для топлива с маслом и присадкой - 330 с.

Таким образом, была установлена полная совместимость всех образцов с моторным маслом.

Стабильность присадки в условиях холодного хранения оценивали по методике, входящей в российский комплекс методов квалификационной оценки дизельных топлив. Согласно этой методике присадку выдерживают в холодильной камере при минус 13°С в течение двух недель. Образец считается выдержавшим испытание, если он не расслаивается на отдельные фазы, в нем не образуются пленки и другие гелеобразные продукты. Допускается застывание присадки, если при оттаивании он сохраняет свою однородность.

Присадка прошла испытания с положительным результатом.

Таким образом, разработанная противоизносная присадка к ультрамалосернистому дизельному топливу, представляющая собой композицию из дистиллированных жирных кислот растительных масел и легкого изопарафинового масла гидрокрекинга, благодаря заявленному качественному и количественному сочетанию компонентов, является эффективной и более дешевой по сравнению с прототипом за счет исключения из состава более дорогостоящих жирных кислот таллового масла, расширяет ресурсы сырья для выработки противоизносных присадок, не влияет на физико-химические свойства дизельного топлива, отвечает требованиям, предъявляемым к присадкам к дизельным топливам, а именно: на совместимость с водой, на совместимость с моторным маслом, на стабильность при холодном хранении.

Присадка к ультрамалосернистому дизельному топливу, содержащая дистиллированные жирные кислоты растительных масел, выделяемые из продуктов переработки масличных культур, отличающаяся тем, что дополнительно содержит легкое изопарафиновое масло гидрокрекинга при следующем соотношении компонентов, мас.%:

дистиллированные жирные кислоты растительных
масел 40,0-70,0
легкое изопарафиновое масло гидрокрекинга 30,0-60,0



 

Похожие патенты:

Изобретение относится к способам получения жидкого биотоплива из отходов или продуктов растительного происхождения. Изобретение может быть использовано для получения дизельного моторного и светлого печного топлива, где в качестве источника сырья могут быть использованы отходы или продукты растительного происхождения, в частности древесные отходы, такие как стружки, опилки, щепа, кора деревьев или растительные отходы сельского хозяйства, например солома, ботва и другие.

Изобретение относится к двум вариантам способа снижения загрязнителей окружающей среды в тяжелом судовом жидком топливе. Один из вариантов включает: смешивание некоторого количества сырья тяжелого судового жидкого топлива с некоторым количеством водородного газа в качестве активирующего газа с получением смеси исходного сырья; контактирование смеси сырья с катализаторами, в качестве которых используют по меньшей мере катализатор гидродеметаллирования и катализатор гидродесульфурации, с образованием технологической смеси из смеси сырья; получение указанной технологической смеси и отделение жидких компонентов продукта тяжелого судового жидкого топлива технологической смеси от газообразных компонентов и побочных углеводородных компонентов технологической смеси и выгрузку продукта тяжелого судового жидкого топлива, при этом осуществляют выборочное удаление загрязнений окружающей среды из исходного сырья тяжелого судового жидкого топлива с обеспечением контакта смеси сырья сначала со слоем катализатора для деметаллизации, а далее со слоем катализатора для десульфуризации, в процессе осуществления способа слой с высокой активностью деметаллизации действует как защитный слой для слоя десульфурации.

Изобретение раскрывает способ получения водоугольного топлива, который включает стадии дробления угля, его мокрое измельчение, смешивание с водой для получения водоугольной суспензии, стабилизацию измельченного угля и обезвоживание, характеризующийся тем, что мокрое измельчение угля осуществляют до размеров 100-150 мкм, а обезвоживание угля осуществляют в центрифуге на движущейся обновляемой фильтрующей поверхности со свободным сечением 40-50% при числе оборотов ротора 200-250 мин-1 до влажности 5-7%, при этом отведенную жидкость (фугат) после обезвоживания возвращают на стадию смешивания.
Изобретение описывает способ получения многокомпонентной биотопливной композиции, включающий смешение дизельного топлива с рапсовым маслом холодного отжима и этиловым спиртом, характеризующийся тем, что перемешивание многокомпонентной биотопливной композиции, характеризующийся следующим соотношением компонентов, в об.%: дизельное топливо – 50, рапсовое масло холодного отжима – 25, этиловый спирт – 25, осуществляется непрерывно в дополнительном топливном баке транспортного средства со смесителем и подогревателем посредством насоса лопастного типа с электродвигателем при частоте вращения вала 1000 мин-1, с объемной скоростью не менее 100 л/ч и температурой композиции 40°С с помощью инвертора и датчика температуры жидкости, установленного на дне дополнительного топливного бака.

Предложена противоагломерационная добавка для предотвращения или ингибирования агломерации газовых гидратов в потоке сырых углеводородов, содержащая A) противоагломерат, который представляет собой продукт реакции: (i) реагента дикарбоновой кислоты, замещенной гидрокарбильной группой, выбранной из метана, бутана или бутена, гексана или гексена, нонана или нонена, додекана или додецена, октадекана или октадецена, эйкозана или эйкозена, докозана или докозена и их разветвленных производные и изомеров, а также из полиолефинов, (ii) азотсодержащего соединения, имеющего атом кислорода или азота, способного конденсироваться с указанным реагентом гидрокарбилзамещенной дикарбоновой кислоты, и дополнительно имеющего по меньшей мере одну кватернизируемую аминогруппу, выбранного из диаминов и алканоламинов, и (iii) кватернизующего агента, подходящего для превращения кватернизируемой аминогруппы азотсодержащего соединения в четвертичный азот, выбранного из сульфонатов; сультонов; фосфатов; боратов; нитритов; нитратов; оксалатов; алканоатов; дитиофосфатов; сульфатов; галогенидов; карбонатов; гидрокарбилэпоксидов; карбоксилатов; сложных эфиров и их смесей, и В) гидрокарбиламидогидрокарбиламин формулы (1), где R101 представляет собой гидрокарбильную группу, содержащую от 1 до 23 атомов углерода, R102 представляет собой двухвалентную гидрокарбильную группу, содержащую от 1 до 10 атомов углерода, каждый из R103 и R104 независимо представляет собой водород или гидрокарбильную группу, содержащую от 1 до 23 атомов углерода, и R105 представляет собой водород или гидрокарбильную группу, содержащую от 1 до 23 атомов углерода.

Изобретение относится к водным эмульсиям, содержащим сополимеры этилена и винилацетата или сополимеры этилена и винилацетата и полиалкил(мет)акрилатов, и способу их получения. Кроме того, настоящее изобретение относится к применению указанных водных эмульсий в качестве препятствующих гелеобразованию добавок к сырой нефти.
Изобретение раскрывает судовое топливо, включающее малосернистый легкий газойль каталитического крекинга или легкий газойль коксования, гидроочищенную дизельную фракцию и гидроочищенную смесь вакуумного газойля и тяжелого газойля коксования с пределами температуры кипения 300-520°С при следующем соотношении компонентов, мас.%: легкий газойль каталитического крекинга 10-40 или легкий газойль коксования 7-10 гидроочищенная дизельная фракция 10-43 гидроочищенная смесь вакуумного газойля и тяжелого газойля коксования до 100, но не менее 50, после чего в полученное топливо вводят депрессорно-диспергирующую присадку на основе сополимеров этилена с винилацетатом в количестве 0,05-0,1 мас.%.

Изобретение раскрывает высокооктановый бензин с температурой кипения не выше 215°С и октановым числом не менее 91 ед. по исследовательскому методу, содержащий в качестве основного компонента низкооктановый бензин газовый стабильный, ароматический компонент, метил-трет-бутиловый и изооктен, при следующем соотношении компонентов, мас.%: ароматический компонент 1,0-41,0, метил-трет-бутиловый эфир 3,0-21,0, изооктен 0-17,0, низкооктановый бензин газовый стабильный 42,0-61,0.

Изобретение раскрывает добавку для снижения температуры потери текучести сырой нефти, которая содержит по меньшей мере один органический растворитель и от 20 до 40 % по массе по меньшей мере одного сополимера, состоящего из по меньшей мере двух сомономеров, при этом все сомономеры, составляющие сополимер, выбирают из групп (a) и (b) сомономеров, при этом группа (a) сомономеров состоит из акриловой кислоты и группа (b) сомономеров состоит из стирола, и при этом по меньшей мере один сополимер имеет среднечисловую молекулярную массу от 10000 до 30000 г/моль, доля сомономеров группы (a) в по меньшей мере одном сополимере в расчете на смесь сомономеров составляет от 2,0 до 9,0 % по массе.
Изобретение раскрывает состав экологически чистого дизельного топлива (ЭЧДТ), включающего гидроочищенное дизельное топливо с эфирной добавкой из продуктов этерификации жирных кислот растительного масла двухатомным спиртом – этиленгликолем, характеризующегося тем, что в состав дополнительно вводится антиокислительная присадка, состоящая из амидо-имидазолинов, полученных с помощью реакции конденсации жирных кислот, выделенных из талового масла, и аминов, при следующем соотношении компонентов, мас.%: гидроочищенное дизельное топливо 98,95, эфирная добавка 1,00, антиокислительная присадка 0,05.

Изобретение относится к двум вариантам способа снижения загрязнителей окружающей среды в тяжелом судовом жидком топливе. Один из вариантов включает: смешивание некоторого количества сырья тяжелого судового жидкого топлива с некоторым количеством водородного газа в качестве активирующего газа с получением смеси исходного сырья; контактирование смеси сырья с катализаторами, в качестве которых используют по меньшей мере катализатор гидродеметаллирования и катализатор гидродесульфурации, с образованием технологической смеси из смеси сырья; получение указанной технологической смеси и отделение жидких компонентов продукта тяжелого судового жидкого топлива технологической смеси от газообразных компонентов и побочных углеводородных компонентов технологической смеси и выгрузку продукта тяжелого судового жидкого топлива, при этом осуществляют выборочное удаление загрязнений окружающей среды из исходного сырья тяжелого судового жидкого топлива с обеспечением контакта смеси сырья сначала со слоем катализатора для деметаллизации, а далее со слоем катализатора для десульфуризации, в процессе осуществления способа слой с высокой активностью деметаллизации действует как защитный слой для слоя десульфурации.
Наверх